Circular Economy with Focus on Plastic Wastes
 Riad Sultan

Plastic free Mauritius: Defining the Roadmap
Consultative Workshop \& Expo-Vente on Plastic at
Caudan Art Centre

Circular Economy

- 9R Framework: a set of 9 strategies to be considered for a CE approach, in order of priority:
- Refuse, Rethink, Reduce, Reuse, Repair, Refurbish, Remanufacture, Repurpose, Recycle, and Recover.
- Waste hierarchy: A priority operations order in waste management: prevention, preparing for reuse, recycling, other recovery (including energy recovery), and disposal.
- Upcycle: Transforming waste materials, useless or unwanted products into new materials or products with high perceived value.
- Resource Efficiency: The use of limited resources in a sustainable manner and minimizing environmental impacts, delivering greater value with less input.
- Closed Loop: The combination of reverse and forward logistics with focus on reducing use of raw material and generation of waste by treating effluents and returning them to reuse and/or increasing the durability of products.
- Reverse Logistics: Return used or unused products (parts) from consumers to producers to generate value by reusing or proper disposing.
- Industrial Symbiosis: Cooperation among industries, where one's wastes become other inputs.
- Cradle to Cradle: Create products that allow the safe and potentially infinite (re) use of materials in cycles.
- Clean and Renewable Energies: The use of clean and renewable energy sources instead of fossil and polluting sources.
- End of Life Strategies: Sustainable strategic actions to be performed when a product of component reaches its end of life.

Household wastes under Growth Scenarios

Composition of household wastes

Forecast of wastes under Growth Scenarios

| | | 2% | | 4% | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Types of wastes | 2019 | 2025 | 2030 | 2025 | 2030 | 2025 | 2030 |
| Plastic | $\mathbf{7 1 , 9 6 3}$ | $\mathbf{7 3 , 2 7 5}$ | $\mathbf{8 0 , 1 1 3}$ | $\mathbf{8 0 , 7 4 6}$ | $\mathbf{9 7 , 2 8 2}$ | $\mathbf{8 8 , 8 1 4}$ | $\mathbf{1 0 5 , 1 9 2}$ |
| Paper | 71,963 | 73,275 | 80,113 | 80,746 | 97,282 | 88,814 | 105,192 |
| Food waste | 138,785 | 141,315 | 154,503 | 155,724 | 187,615 | 171,285 | 202,870 |
| Yard waste | 138,785 | 141,315 | 15,4503 | 155,724 | 187,615 | 171,285 | 202,870 |
| Glass | 15,421 | 15,702 | 17,167 | 17,303 | 20,846 | 19,032 | 22,541 |
| Metals | 15,421 | 15,702 | 17,167 | 17,303 | 20,846 | 19,032 | 22,541 |
| Textiles | 30,841 | 31,403 | 34,334 | 34,605 | 41,692 | 38,063 | 45,082 |
| Others | 30,841 | 31,403 | 34,334 | 34,605 | 41,692 | 38,063 | 45,082 |
| Total | 514,020 | 523,391 | 572,233 | 576,756 | 694,871 | 634,387 | 840,678 |

Composition of plastic wastes

Forecast of plastic wastes under Growth Scenarios

		2\%		4\%		6\%	
Types of Plastic waste	2019	2025	2030	2025	2030	2025	2030
Linear low-density polyethylene	90	100	100	105	150	115	150
Polyethylene terephthalate	12000	12000	13500	13500	16300	14900	17600
Acrylonitrile butadiene styrene	150	150	160	160	200	200	210
High density polyethylene	19000	20000	21500	21600	26000	23700	28000
Polystyrene	504	513	561	600	681	600	736
Polypropylene	4000	4000	4400	4400	5300	5000	5700
Polyvinyl chloride	150	150	160	161	200	200	200
Low density polyethylene	21000	21000	23000	23500	28300	25900	30600
Total	72000	74000	80000	81000	98000	89000	106000

Quantity of PET waste projection 2021-2030 (tonnes)

- Only around 2000-3000tonnes of PET are currently recycle in Mauritius
- It must be noted that PET are converted into secondary raw materials, not final products.
- If all the PET are converted into secondary intermediate output, the total output that can be generated will range from 368 m to 480 m annually, (2% to 6% growth scenarios), generating a direct formal employment of around 250 to 300.
- Indirect (formal and Informal) employment is higher

Direct gross output of recycling PET projection 2021-2030

Indirect gross output of recycling PET projection 2021-2030

The change in output of other local industries due to the purchases of intermediate inputs produce a unit of direct gross output

Recycling of PET

	Quantity (tonnes)	Total output (Rs million)	\% Increase GDP	Investment (Rs Million)			
	2025	2030	2025	2030	Average 2021-2030	2025 capacity	2030 capacity
GDP growth 2\%	13,567	14,979	368	413		99.4	111.5
GDP growth 4\%	15,243	18,546	422	527		0.04%	113.8
GDP growth 6%	17,089	22,869	480	664		129.6	

Recycling HDPE

| | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Employment impacts

	Direct employment		Indirect employment		Total employment	
	2025	2030	2025	2030	2025	2030
GDP growth 2\%	188	211	44	50	233	261
GDP growth 4\%	216	269	51	64	267	333
GDP growth 6\%	246	340	58	80	304	420

Direct employment: The change in employment directly related to the direct gross output.

Indirect employment: The change in employment in other local industries due to

	Direct employment		Indirect employment		Total employment	
	2025	2030	2025	2030	2025	2030
GDP growth 2\%	272	303	64	72	337	374
GDP growth 4\%	306	378	72	89	378	468
GDP growth 6\%	342	419	81	99	423	517

Elements for CE-plastics

- The elements that could provide the foundations of a successful recycling system-a circular economy for plastics-are multifold:
- The first is to conduct research on product design and market conditions to reuse the recovered plastics by recycling them, turning them into new products that will create value.
- This will require a strong industry-university collaboration.
- The second is to design or redesign plastic products to be recyclable and to be used as inputs, with the necessary certification.
- The third is putting in place effective infrastructure and logistic systems to recover end-of-life plastics.
- And the fourth is a cultural shift towards segregation and the use of recycling plastic by consumers and producers.

