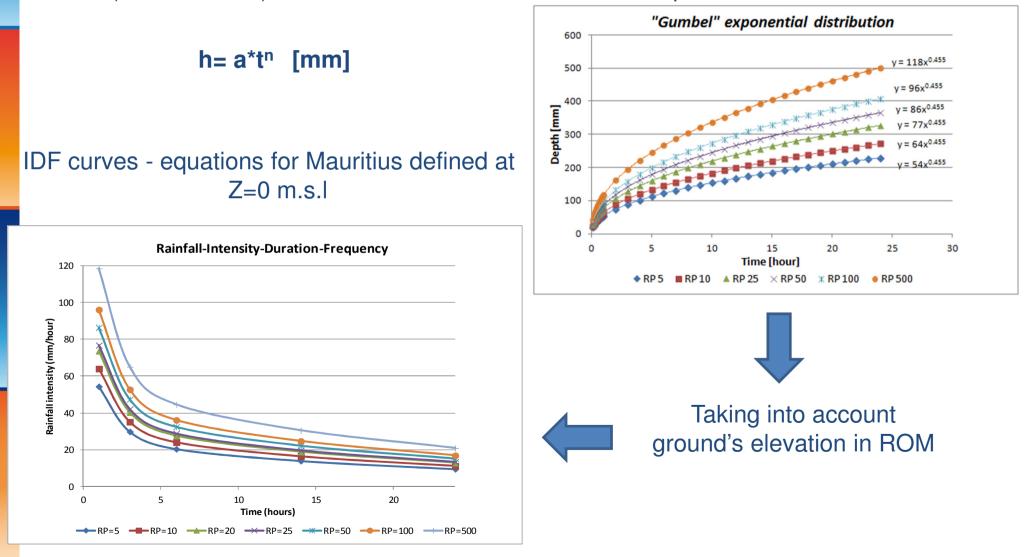


Consultancy Service for the Development of an Inundation, Flooding and Landslide National Risk Profile, Strategic Framework and Action Plans for Disaster Risk Management for the Republic of Mauritius

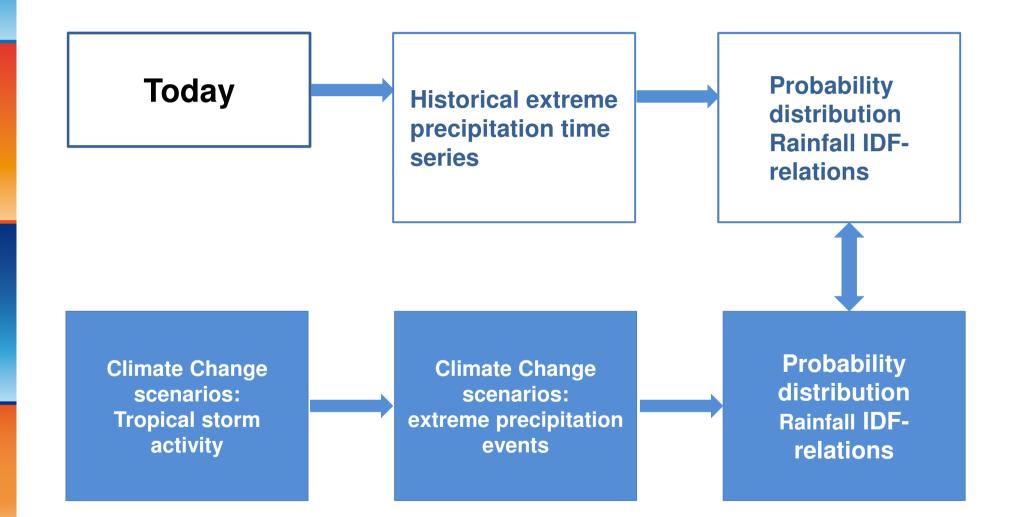
Ing.Filippi Elisa, Hydraulic Engineer SGI Studio Galli Ingegneria Capacity and validation workshop Swami Vivekananda International Convention Centre, Pailles, Mauritius, August 22-24, 2012

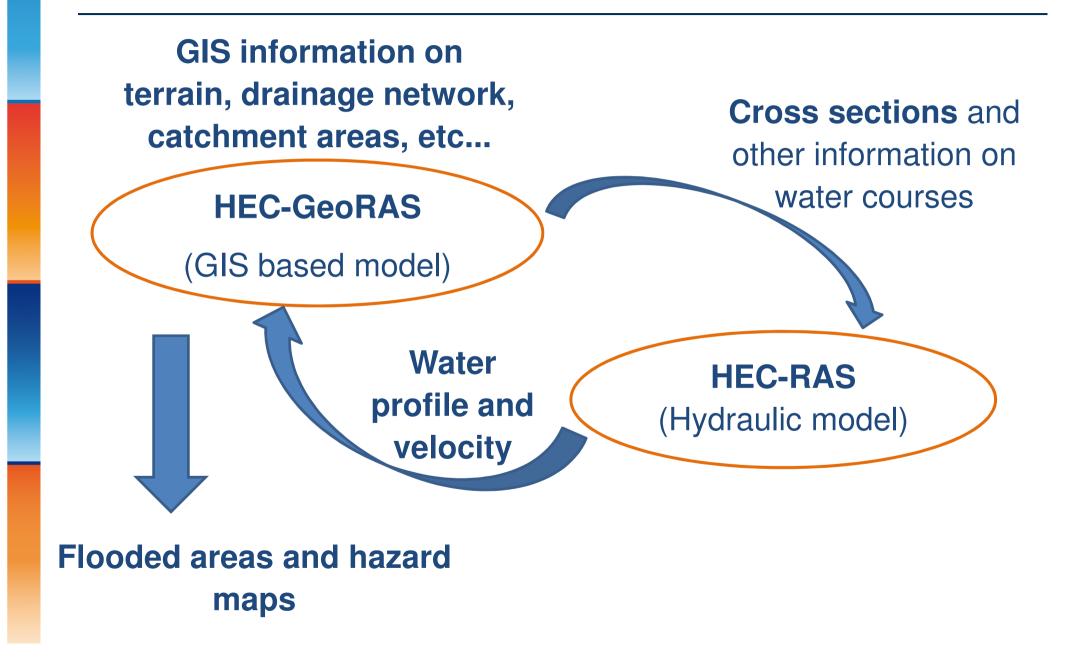
FLOOD HAZARD ASSESSMENT

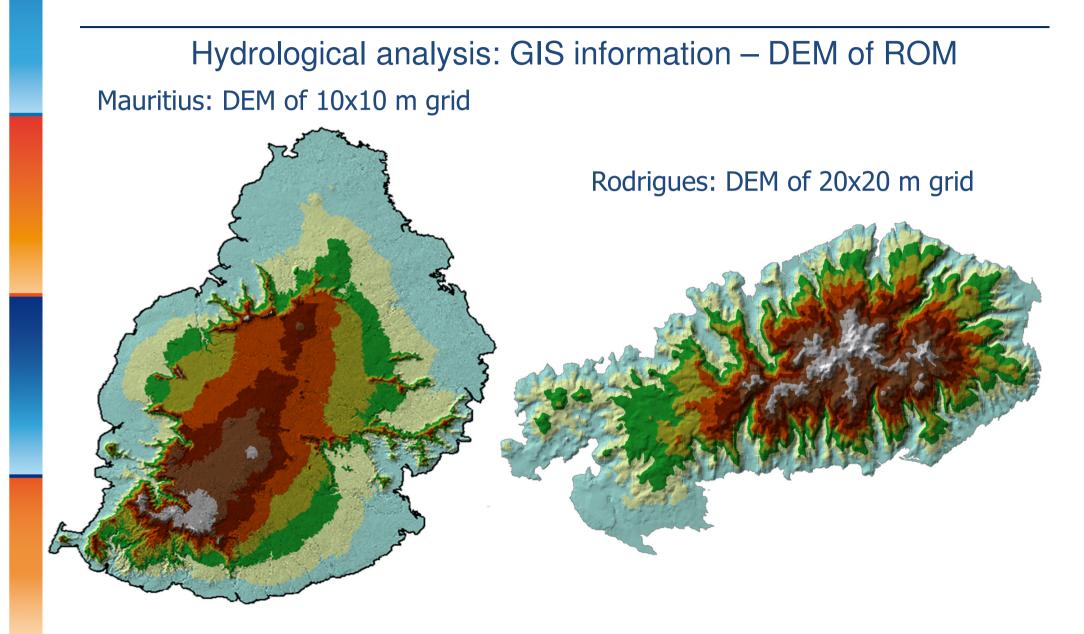
Flood hazard is the chance that a flood event of a certain magnitude will occur in a given area within a given period of time


Flood event March 2008

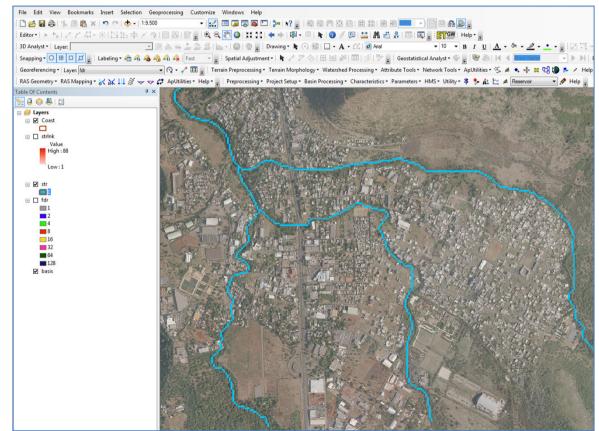
FLOOD HAZARD ASSESSMENT


- 1. Extreme precipitation under current and future climate
- 2. Integrated Hydrologic & Hydraulic analysis
- 3. Flood hazard mapping


Extreme precipitation under current and future climate


One of the most widely used distributions of probability for extreme values (annual series) is the "Gumbel" distribution double exponential:

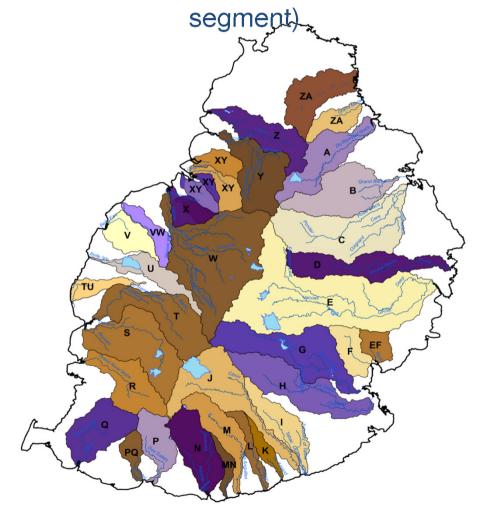
1) Extreme precipitation under current and future climate



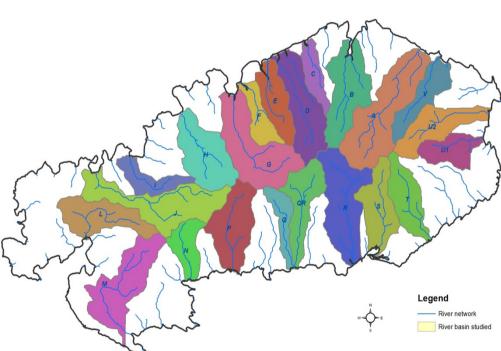
3) Flow accumulation (determines the number of upstream cells draining to a given cell)

4) Stream definition (classifies all cells with a flow accumulation greater than the user defined threshold as cells belonging to the stream

Thresold area					
Pixels	km²				
10000	1				
50000	5				
100000	10				


Minimum surface of drainage subbasin for Mauritius Island: **5 km²** Rodrigues Island: **1 km²**

Catchment basin	Main river name	Area (km2)	Main river length (km)				
Α	Du Rempart North	42.15	16.2				
В	Francoise North	51.84	25.3				
С	Du Poste Flacq	83.84	20.1				
D	Seche	46.55	22.3				
E	Grand River South East (GRSE)	161.90	35.3				
EF	Nyon	11.91	4.9				
F	Champagne	19.31	6.9				
G	Des Creoles	67.73	21.4				
н	La Chaux	58.09	24.0				
I	Tabac	28.92	14.4				
J	Du Poste South	62.26	27.6				
к	St. Amand	9.18	10.5				
L	Dragon	11.94	10.5				
М	Des Anguilles	30.46	8.2				
MN	Bain des Negresses	7.33	6.7				
N	Savanne	39.06	13.0				
Р	Des Galetes	25.19	12.0				
PQ	Jacotet	10.65	8.2				
Q	Baie du Cap	39.76	15.1				
R	Grand River Noire	37.78	13.5				
S	Tamarin	65.43	17.7				
т	Du Rempart West	55.36	19.0				
TU	-	14.60	5.4				
U	Belle Isle	23.78	15.7				
v	Belle Eau	21.31	8.3				
vw	-	14.66	6.7				
W	Grand River North West (GRNW)	119.25	23.4				
х	St. Louis Stream	15.20	6.6				
XY	Lataniers	15.10	8.5				
XY	Rivulet Terre Rouge	12.54	6.3				
XY	Pouce Stream	9.64	4.5				
XY	La Paix Stream	4.46	2.7				
Y	Du Tombeau	45.78	19.5				
Z	Citrons	36.13	13.5				
ZA	Grand Marais	16.15	7.2				
ZA	Goodlands (settlement name)	37.35	8.4				

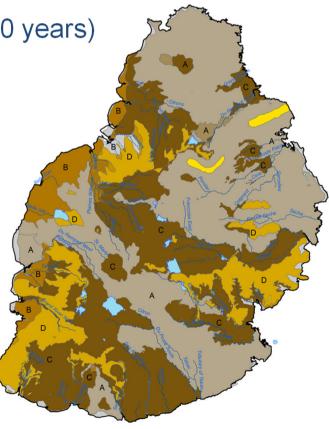

5) Catchment grid delineation

(delineates subbasin for every stream

Rodrigues island – Watersheds Boundaries

Catchment basin	Main river name	Area (km²)	Main river length (km)
A	Banane	5.8	4.9
В	Sygangue	3.9	2.8
С	Anse Aux Anglias	1.3	1.7
D	Cascade Pigeon	3.8	3.5
E	Camp Du Roi	2.3	2.1
F	Acacia	1.5	1.7
G	Baie Aux Huitres	5.0	4.1
н	Malgache	3.7	2.7
I I	Baie Du Nord	1.6	2.7
J	Pistache	5.0	5.5
L	Canne	3.1	3.4
M	Anse Quitor	4.3	5.2
N	Fond Marechal	1.7	2.2
Р	Cocos	3.6	3.0
Q	Du Sel	1.3	2.8
QR	Baleine	2.8	3.5
R	Cascade Victorie	4.6	4.3
S	Mourouk	2.9	2.9
Т	Cascade Graviers	2.5	3.0
U1	Anse Ally	2.9	3.5
U2	St. Francois	1.9	2.0
V	-	2.2	2.8

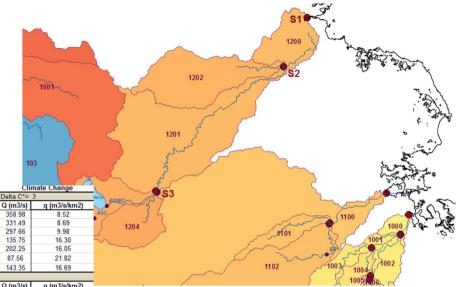
Identification of flood peak discharge: Rational method

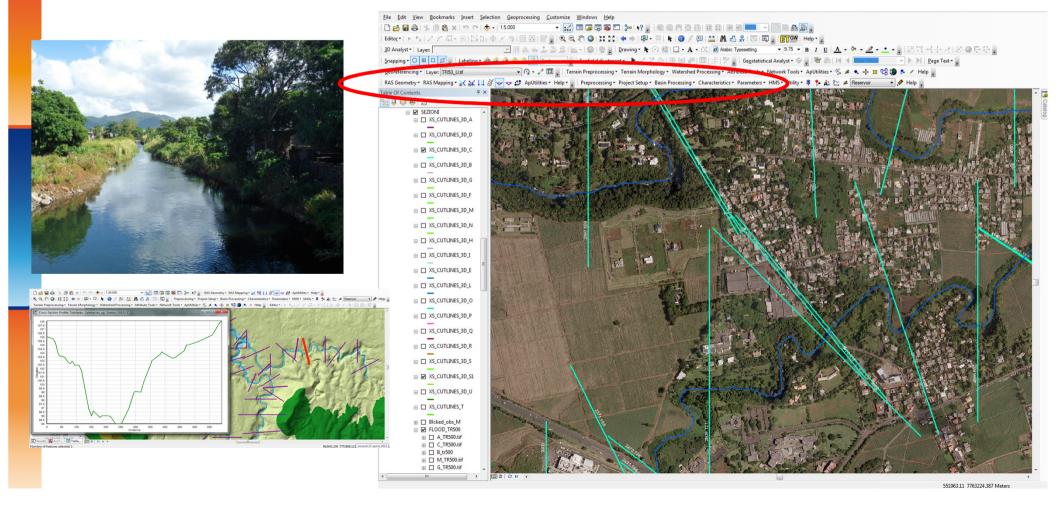

Peak discharge at a given outlet of a catchment area:

$$Q_T = 0,248 \times C_T \times I_T \times A$$

where:

- Q_T, discharge (m³/s) for return period T (25,50,100,500 years)
- C_T, runoff coefficient for return period T
- I_T , intensity (mm/hour) for return period T
- A, catchment area (km²)


MAURITIUS				
Geology	Soil			
	Туре			
Recent Fresh Basaltic Flows	А			
Intermediate Fresh Basaltic Flows	В			
Superficial Alluvium and Eluvium	В			
Basalt	С			
Brechia Series	С			
Pyroclasts and Weathered Basaltic	С			
Flows				
Recent Pyroclasts and Weathered	с [
Basaltic Flows				
Ancient Basaltic Flows	D			


Peak flow estimation:

- current climatic condition
- climate change scenario

Portate c	on metodo razionale per il b	acino A												tuale	I Clin	nate Change
r 500 an				_		_								= 0.9	Delta C°=	
	Bacini sottesi	S (pixels)	S (km2)	L (km)	Z (m)	H (m)	Тс	P (mm)	I (mm/h)	Area factor	Inf (mm/h)	FARL	Q (m3/s)	a (m3/s/km2)		a (m3/s/km2)
1	1200+1201+1202+1203+1204	421535	42.15	16.2	0	177.2	4.7	247.2	52.4	0.97	19.6	0.9	304.2	7.2	358.98	8.52
2v	1201+1202+1203+1204	381606	38.16	13.6	26	192.7	4.4	239.9	55.0	0.97	21.2	0.9	280.9	7.4	331.49	8.69
2m dx	1201+1203+1204	298321	29.83	13.6	26	215.1	3.8	226.5	59.0	0.98	20.0	0.9	252.3	8.5	297.66	9,98
2m sx		83285	8.33	2.4	26	112.6	2.0	166.3	81.5	0.99	25.4	1.0	115.0	13.8	135.75	16.30
3v	1203+1204	126036	12.60	2.6	173	295.8	2.0	172.3	84.5	0.99	12.7	0.8	171.4	13.6	202.25	16.05
3m dx		40133	4.01	2.2	173	227.0	1.9	165.9	86.7	1.00	12.7	1.0	74.2	18.5	87.56	21.82
3m sx		85903	8.59	2.6	173	328.0	1.6	152.3	97.1	0.99	12.7	0.7	121.5	14.1	143.35	16.69
osm_sx i r 100 a r		65903	0.59	2.0	173	328.0	1.0	152.3	97.1	0.99	12.7	0.7		• 0.8	143.35	16.69
	Bacini sottesi	S (pixels)	S (km2)	L (km)	7 (m)	H (m)	Тс	D (mm)	L (mm/b)	Area factor	Inf (mm/b)	FARL	Q (m3/s)	g (m3/s/km2)	0 (m2/a)	a (m3/s/km2)
31	1200+1201+1202+1203+1204	421535	42.15	16.2	0	177.2	4.7	200.7	42.6	0.97	19.6	0.9	187.6	4.5	221.38	5.25
S2v	1201+1202+1203+1204	381606	38.16	13.6	26	192.7	4.4	194.8	42.0	0.97	21.2	0.9	171.8	4.5	202.70	5.31
	1201+1202+1203+1204	298321	29.83	13.6	26	215.1	3.8	183.9	44.7	0.98	21.2	0.9	159.7	5.4	188.50	6.32
S2m_sx	1202	83285	8.33	2.4	26 173	112.6 295.8	2.0	134.9	66.1	0.99	25.4	1.0	74.1	8.9	87.46	10.50
63v		126036	12.60	2.6			2.0	140.0	68.6	0.99	12.7	0.8	118.6	9.4	140.00	11.11
S3m_dx		40133	4.01	2.2	173	227.0	1.9	134.8	70.4	1.00	12.7	1.0	51.4	12.8	60.70	15.12
3m_sx		85903	8.59	2.6	173	328.0	1.6	123.7	78.9	0.99	12.7	0.7	84.6	9.9	99.86	11.62
r 50 ann														= 0.7		
	Bacini sottesi	S (pixels)	S (km2)	L (km)	-		Tc	P (mm)		Area factor		FARL	Q (m3/s)	q (m3/s/km2)		q (m3/s/km2)
51	1200+1201+1202+1203+1204	421535	42.15	16.2	0	177.2	4.7	180.6	38.3	0.97	19.6	0.9	133.0	3.2	156.89	3.72
32v	1201+1202+1203+1204	381606	38.16	13.6	26	192.7	4.4	175.4	40.2	0.97	21.2	0.9	120.9	3.2	142.71	3.74
32m_dx	1201+1203+1204	298321	29.83	13.6	26	215.1	3.8	165.6	43.2	0.98	20.0	0.9	115.5	3.9	136.27	4.57
S2m_sx	1202	83285	8.33	2.4	26	112.6	2.0	121.4	59.5	0.99	25.4	1.0	54.2	6.5	64.01	7.69
S3v	1203+1204	126036	12.60	2.6	173	295.8	2.0	126.0	61.8	0.99	12.7	0.8	91.1	7.2	107.51	8.53
3m dx	1204	40133	4.01	2.2	173	227.0	1.9	121.3	63.4	1.00	12.7	1.0	39.5	9.9	46.65	11.62
3m_sx	1203	85903	8.59	2.6	173	328.0	1.6	111.4	71.0	0.99	12.7	0.7	65.2	7.6	76.99	8.96
r 25 anr	25												C=	0.6		
ezione	Bacini sottesi	S (pixels)	S (km2)	L (km)	Z (m)	H (m)	Tc	P (mm)	I (mm/h)	Area factor	Inf (mm/h)	FARL	Q (m3/s)	q (m3/s/km2)	Q (m3/s)	q (m3/s/km2)
61	1200+1201+1202+1203+1204	421535	42.15	16.2	0	177.2	4.7	160.6	34.1	0.97	19.6	0.9	87.2	2.1	102.91	2.44
52v	1201+1202+1203+1204	381606	38.16	13.6	26	192.7	4.4	155.9	35.7	0.97	21.2	0.9	78.5	2.1	92.62	2.43
2m dx	1201+1203+1204	298321	29.83	13.6	26	215.1	3.8	147.2	38.4	0.98	20.0	0.9	78.2	2.6	92.22	3.09
2m sx		83285	8.33	2.4	26	112.6	2.0	107.9	52.9	0.99	25.4	1.0	37.4	4.5	44.14	5.30
3v	1203+1204	126036	12.60	2.6	173	295.8	2.0	112.1	55.0	0.99	12.7	0.8	67.2	5.3	79.30	6.29
3m dx		40133	4.01	2.2	173	227.0	1.9	107.9	56.4	1.00	12.7	1.0	29.2	7.3	34.45	8.58
S3m_sx		85903	8.59	2.6	173	328.0	1.6	99.1	63.2	0.99	12.7	0.7	48.4	5.6	57.09	6.65
r 10 anr		03303	0.00	2.0	113	520.0	1.0	33.1	03.2	0.00	12.1	0.1		• 0.5	51.05	0.05
	Bacini sottesi	S (pixels)	S (km2)	L (km)	7 (m)	H (m)	Тс	P (mm)	L(mm/b)	Area factor	Inf (mm/b)	FARL	Q (m3/s)	g (m3/s/km2)	Q (m3/s)	g (m3/s/km2)
31	1200+1201+1202+1203+1204	421535	42.15	16.2	0	177.2	4.7	134.1	28.4	0.97	19.6	0.9	46.1	1,1	54.39	1.29
2v	1200+1201+1202+1203+1204	381606	38.16	13.6	26	192.7	4.4	134.1	20.4	0.97	21.2	0.9	40.1	1.1	47.43	1.29
		298321	29.83	13.6	26	215.1	4.4	123.0	32.1	0.97	21.2	0.9	40.2	1.1	53.10	1.24
	1201+1203+1204															
2m_sx		83285	8.33	2.4	26	112.6	2.0	90.1	44.1	0.99	25.4	1.0	22.6	2.7	26.63	3.20
3v	1203+1204	126036	12.60	2.6	173	295.8	2.0	93.7	45.9	0.99	12.7	0.8	46.9	3.7	55.39	4.40
S3m_dx		40133	4.01	2.2	173	227.0	1.9	90.2	47.1	1.00	12.7	1.0	20.4	5.1	24.12	6.01
S3m_sx	1203	85903	8.59	2.6	173	328.0	1.6	82.8	52.8	0.99	12.7	0.7	34.1	4.0	40.28	4.69

HEC-GeoRAS 4.1.1: an extension for use ArcGIS, a general purpose Geographic Information System software program developed an copyrighted by the *Environmental Systems Research Institute, Inc., (ESRI)* Redlands, California . It is a set of ArcGIS tools designed to process geospatial data for use with the HEC-RAS hydraulic model


Topographic survey

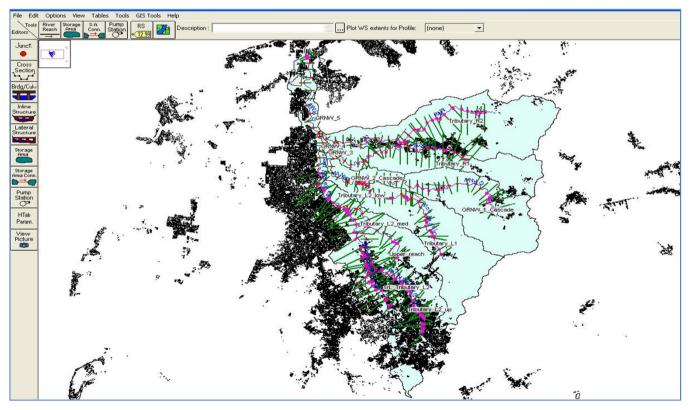
has been conducted to define the geometry when:

• the overlap of available DEM and aerial photos highlighted the uncertainty related to river's network

• the river network cross very high populated area

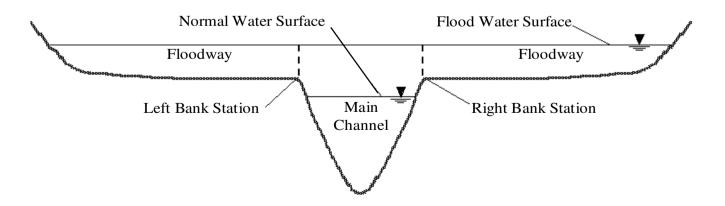
• you have to define the structures

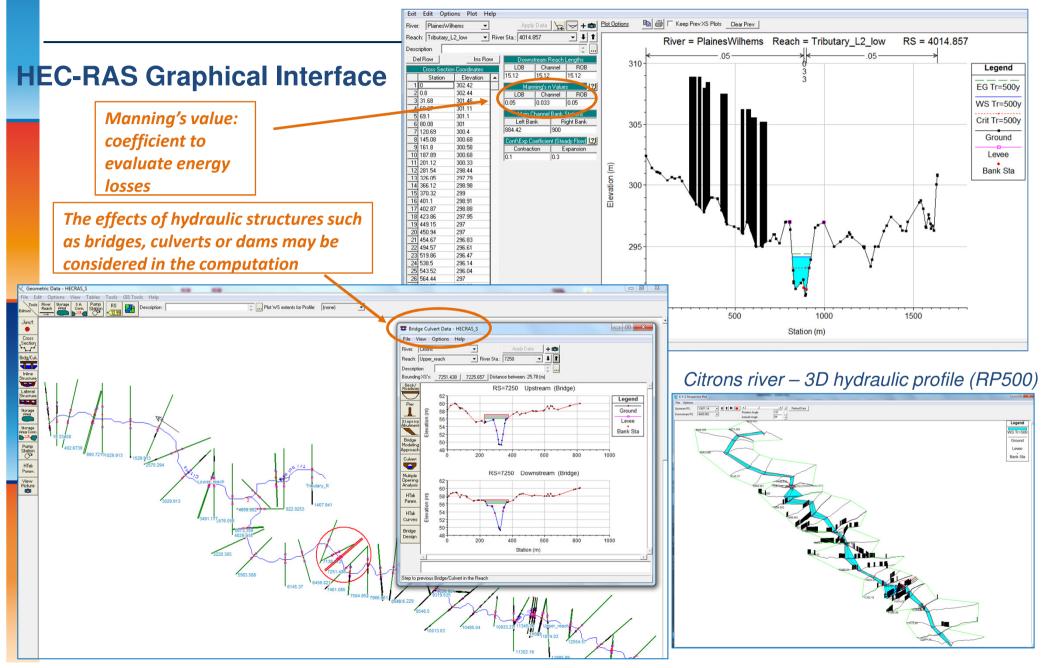
Topographic survey along La Pouce and S.Louis stream

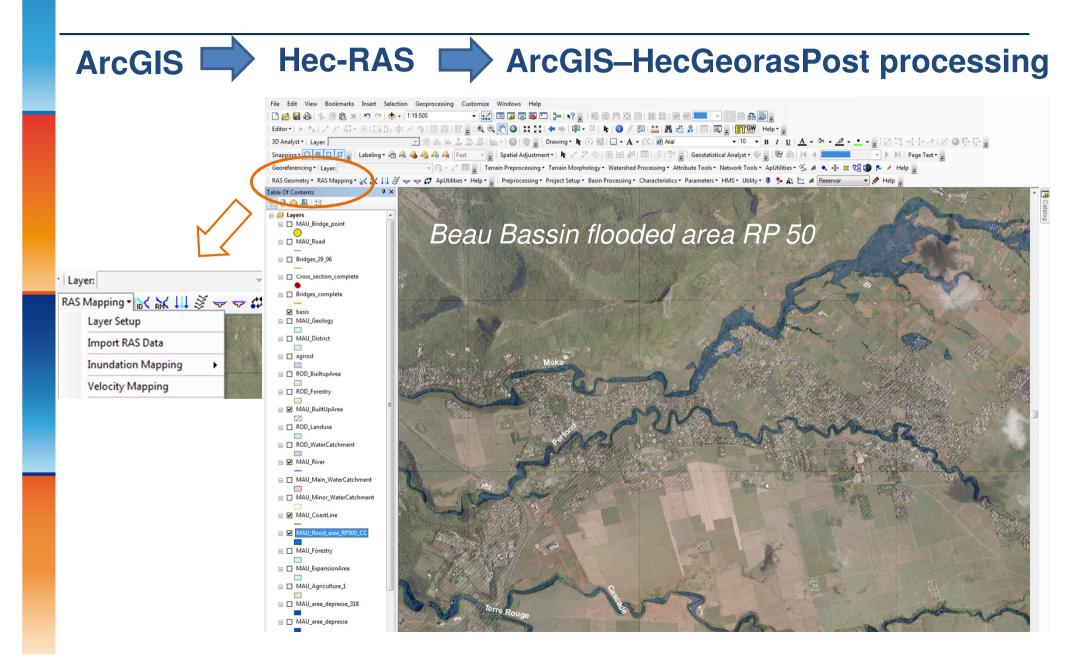


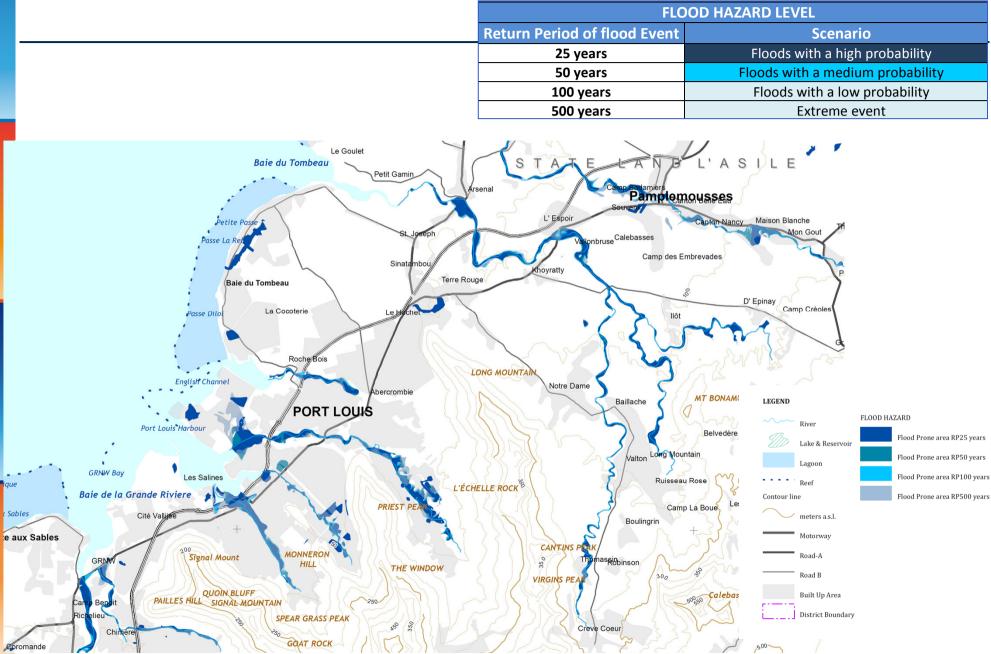
Topographic survey along Rivière du Rempart

Topographic survey along Citrons river

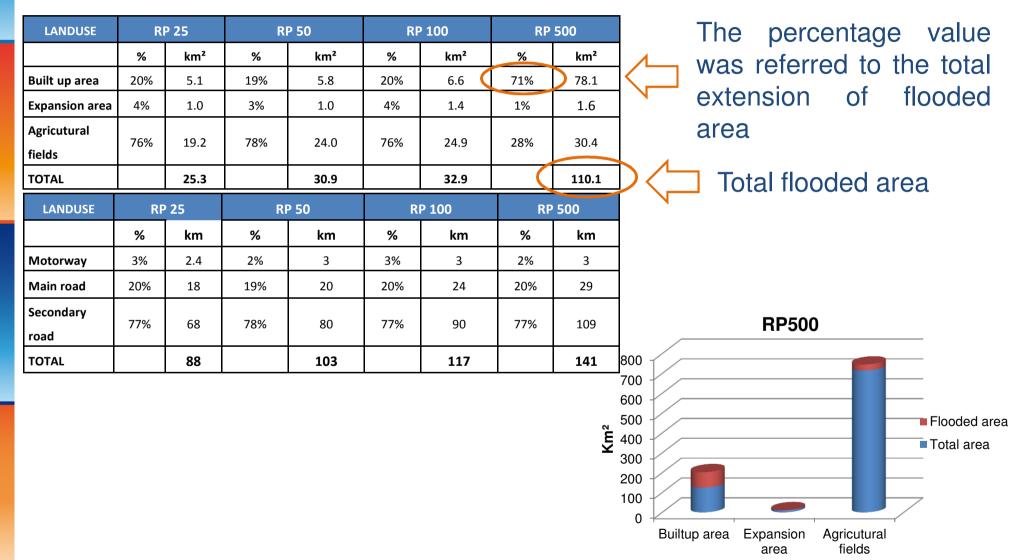

HEC-Ras - River Analysis System - developed by *US Army Corps of Engineers (Version 4.1 January 2010)* **:** 1D Hydraulic model, based on the finite difference method; it allows to perform water surface profile calculations for steady gradually varied flow in natural or constructed channels



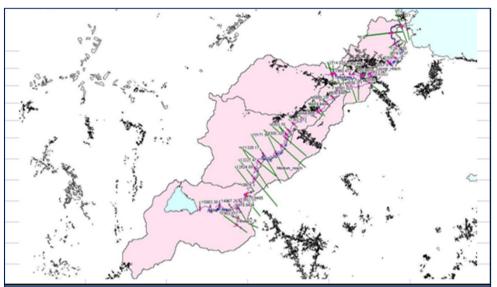

Hec-Ras model – Basin W - Grand River North West (GRNW).


At each cross-section, several geometry parameters are required to describe shape, elevation, and relative location along the stream:

- River station (cross-section) number
- Lateral and elevation coordinates for each terrain point
- Left and right bank station locations
- Reach lengths between adjacent cross-sections
- Manning's roughness coefficients
- Channel contraction and expansion coefficients
- Geometric description of any hydraulic structures (bridges, culverts, weirs, etc.)

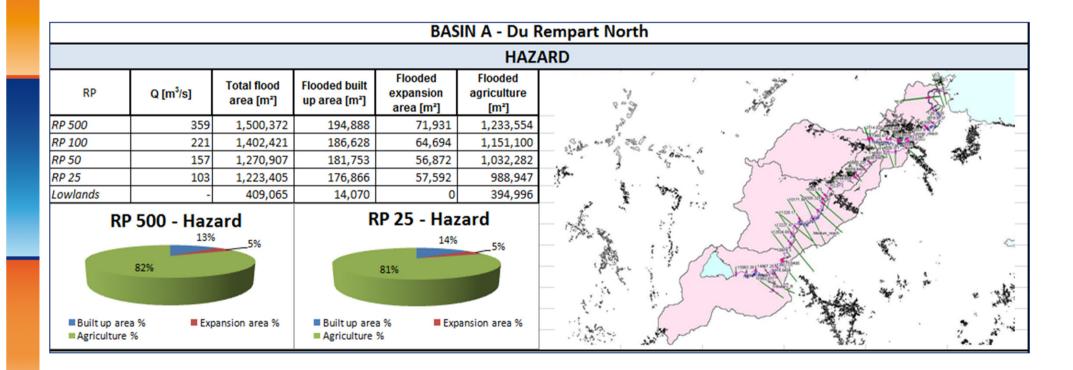


FLC	FLOOD HAZARD LEVEL					
Return Period of flood Event	Scenario					
25 years	Floods with a high probability					
50 years	Floods with a medium probability					
100 years	Floods with a low probability					
500 years	Extreme event					



The impact of the flood hazard on the land use in Mauritius island

Statistical results of Basin A (ANNEX 6)


Extension of different land use studied categories and infrastructures
Percentage of land use categories in basin area

Landuse	%	km²	Landuse				
Built up area	7%	2.84	Landuse				
Expansion area	2%	0.93	797				
Agriculture	63%	26.65	28% 7% 2%				
Natural	28%	11.74	63%				
		42.15	03%				
Road	%	km					
Motorway	0%	-					
Primary	33%	25.86	Built up area Expansion area				
Secondary	67%	53.62					
		79.48	Agriculture Natural				

Statistical results of Basin A (ANNEX 11)

- Extension of total flooded area in basin A
- Extension of flooded area divided for different land use

Thank you for your attention

DESAL& ASSOCIATES LTD

