

XLM-TRANSPORT TOOLKIT

User Manual

AUGUST 1, 2017

Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division) Republic of Mauritius

XL-Mitigation Transport Toolkit User Reference

About this manual

This manual, *XL-Mitigation Transport User Reference*, forms part of a family of toolkits to compute and plot a number of other variables including GHG emissions for Transport sector. The user reference has been written from an application developer's perspective. A fundamental conceptual and operational knowledge of Excel is assumed.

Disclaimer

Data used has been obtained from reliable sources. The Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division) assumes no responsibility for errors and omissions in the data provided. Users are, however, kindly asked to report any errors or deficiencies in this product to the Ministry. The choices of calculation made in this tool are derived from TNC Report (2016).

Copyright

©2017 Government of Mauritius and United Nations Environment Programme

All rights reserved. No part of this Guideline and/or Toolkit may be produced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission from the Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division) and the United Nations Environment Programme. Results based on the use of the Toolkit must be duly acknowledged and referenced; the copyright holder's endorsement of Users' views, products or services shall not be implied in any way.

Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division) Ken Lee Tower, Corner St Georges	UNEP	gef
and Barrack Streets	United Nations Environment	Global Environment Facility
Port Louis, Mauritius	Programme	1818 H Street, NW
Phone: +(230) 203 6200	Division of Technology, Industry	Washington, USA
Fax: +(230) 212 9407	and Economics, DTIE	Tel :+(202) 473 3202
Email: menv@govmu.org	P.O. Box 30552	Fax :+(202) 522 3240
Website:	Nairobi, Kenya	Email: gefceo@thegef.org
http://environment.govmu.org	Tel :+(254-20) 762 5264	0 0 0
	Fax :+(33-1) 4437-1474	Website: <u>www.thegef.org</u>
	Website: http://www.unep.org/	

XLM-Transport Toolkit

Table of Contents

1.0 Introduction	.3
2.0 Overview of the Transport sector	.3
3.0 GHG Emissions from the Transport sector	.4
4.0 Mitigation Actions proposed under TNC for the Transport sector	.4
4.1 Mitigation Scenarios and Assumptions	.4
4.2 TNC Targets under different scenarios	.6
5.0 XLM– Transport Toolkit	.7
5.1 Transport Data	.7
5.2 Transport Parameters	.7
5.3 Transport Assumptions	.9
5.4 Graphic Analysis and Reporting	.9
6.0 References	13
7.0 Appendices	13

XLM-Transport Toolkit

1.0 Introduction

This document refers to a user-friendly toolkit developed to mitigate the Energy: Transport sector of the Republic of Mauritius.

The mitigation for Transport sector was assessed in the Third National Communications (TNC) Report (2016) for a Business-as-Usual (BAU) and 4 other scenarios, after a screening exercise to select the most feasible options. Thus, the first scenario, after the BAU, considered that improvement in the fuel intensity of vehicles. The second scenario consider an improvement in the vehicle inspection as a result of introduction of sophisticated technologies by private vehicle inspection centres. The third scenario entails low-carbon options through the increase of hybrid and electric vehicles and ethanol substitution for gasoline. The last scenario considers substitution of vehicles by a mass transit light rail system.

The XLM-Transport Toolkit performs basic calculations guided by the TNC (2016) with the parameters and assumptions used therein for computing the Greenhouse Gas (GHG) emissions resulting from this sector till 2050. Users of this user-friendly XLM-Transport Toolkit can adjust the scenarios by choosing appropriate parameters/assumptions to suit their needs of the mitigation analysis.


2.0 Overview of the Transport sector

Road transportation, the only mode of land transport in Mauritius, caters for both the passenger and freight transport needs. Mauritius plans to introduce a mass transit system by 2019. Since Mauritius is an important tourist destination, international flights connect the islands of the Republic. In 2013, over 10,300 flights were recorded of which 8,100 were international and 2,200 were domestic. Mauritius also has one port from which domestic and international shipping is operated both for cruise, fishing and freight purposes.

As per the TNC findings, the XLM-Transport Toolkit considers land transportation only.

Mauritius	Rodrigues
Road length: 2275 km	Fleet of vehicles: 11,937 (8.7% av. growth rate)
• Motorway length: 99 km	
• Main roads – total length: 1131 km	
Fleet of Vehicles: 486,144 (5.2% av. growth	
rate; 9.3% for private motor cars, 11.7% for	
motorcycles)	
Motorization rates: 385 vehicles per thousand	
people	

Facts (2015): Transport sector (TNC Report, 2016)

3.0 GHG Emissions from the Transport sector

Figure 3.1: Trend of emissions for the energy transport sector (p30 TNC for values)

The transport sector is the second biggest emitter (19.7%) in Mauritius.

Figure 3.1 shows the trend for the Transport sector (which includes land, sea and air transportation). The emission of this sector stands around 1,007.4 Gg CO2e in 2013. Increase at a linear rate of 20.3 Gg in the emission in the transport sector is attributed essentially to changes in lifestyle arising mainly from an increase in number of vehicles.

4.0 Mitigation Actions proposed under TNC for the Transport sector 4.1 Mitigation Scenarios and Assumptions

Relative to the BAU scenario, four mitigation actions were developed by TNC (2016):

- Scenario 1 (SC1) relies improvement of fuel intensity;
- Scenario 2 (SC2) calls for an improvement in the vehicle inspection;
- Scenario 3 (SC3) adopts low carbon options;
- Scenario 4 (SC4) invokes a mass transit light rail system.

The assumptions adopted by TNC for mitigations actions for the Transport sector are summarized in Table 4.1.

The parameters used for the different scenarios appear in section 5.2.

Table: 4.1: Mitigation actions proposed by TNC (2016) and Assumptions used. (Land Transport)

	Scenario	TNC Assumptions
BAU	Business-As- Usual	BAU is based on the TNC methodology which projects equivalent GHG emissions after performing a two-layer calibration (see TNC Report for details) using a parametric model for both passenger and freight mobility followed by an energy balance using published fuel consumption data.
SC1	Improvement of fuel intensity	Main Assumption: Improvements in the fuel intensity of vehicles (applied to all vehicles) at the rate of 1% per year pre-2020, and increasing to 1.5% per year post-2020.
SC2	Improvement in the vehicle inspection	Main Assumption: Improved vehicle inspection (privatization of centres starting in 2017) leads to an overall reduction in GHG emission reductions of 5% in 2019.
SC3	Low-carbon options	A low-carbon option has been modelled that combines three tech- nologies: blended bio-ethanol produced in Mauritius, and an increasing penetration of hybrid cars and electric cars. These options are assumed to impact on gasoline-fueled cars. For ethanol, it is assumed that there is a total available potential of 20 ML bio-ethanol per year, the low-carbon scenario accounts for a 25% penetration in 2020, and increasing by increments of 5% in subsequent years until 100% penetration is reached in 2035 (i.e. 50% in 2025 and 75% in 2030).
SC4	Mass transit light rail system	Light Rail System (LRS) generates modal shift away from private cars and buses along the Curepipe – Port Louis corridor. The impact of the LRS on road transport GHG emissions has been modelled (TNC Report, 2016) taking into account the reduction in car and bus annual distance travelled as follows: 2018: cars – 109 540 000 km; buses – 10 547 000 km; 2028: cars – 107 204 000 km; buses – 10 836 000 km; 2038: cars – 115 300 000 km; buses – 11 330 000 km; 2038-2050: the reductions kept constant at their 2038 levels; Also, 90% of the reduction in car passenger mobility is attributed to gasoline-fueled cars, and the remaining 10% to diesel-fueled cars.
SC5	Cumulative	Impact of all scenarios

4.2 TNC Targets under different scenarios

For this sector, the resulting reductions from the TNC studies in GHG emissions over time frames of 2020, 2030, 2040 and 2050 are given in Table 4.5 (see also Figure 4.1).

	Scenario	TARGETS Expected GHG Emissions/Reductions	TNC Remarks
BAU	Business-As- Usual	BAU GHG Emissions: 2020: 1093 Gg CO2e; 2030: 1294 Gg CO2e; 2040: 1453 Gg CO2e; 2050: 1645 Gg CO2e;	
SC1	Improvement of fuel intensity	Relative to BAU, emissions reductions of: 11 Gg CO2e in 2020; 19 Gg CO2e in 2030; 22 Gg CO2e in 2040; 25 Gg CO2e in 2050.	
SC2	Improvement in the vehicle inspection	Relative to BAU, emission reductions of: 54 Gg CO2e in 2020; 64 Gg CO2e in 2030; 73 Gg CO2e in 2040; 82 Gg CO2e in 2050.	An intermediate reduction level of 2.5% is achieved in 2018.
SC3	Low-carbon options	Relative to BAU, emission reductions of: 9 Gg CO2e in 2020; 42 Gg CO2e in 2030; 99 Gg CO2e in 2040; 180 Gg CO2e in 2050.	
SC4	Mass transit light rail system	Relative to BAU, emission reductions of: 25 Gg CO2e in 2020; 26 Gg CO2e in 2030; 27 Gg CO2e in 2040; 27 Gg CO2e in 2050.	
SC5	Cumulative	Relative to BAU, emission reductions of: 99 Gg CO2e in 2020; 151 Gg CO2e in 2030; 221 Gg CO2e in 2040; 314 Gg CO2e in 2050.	

Table 4.5: 2016 TNC GHG Emissions in Transport sector

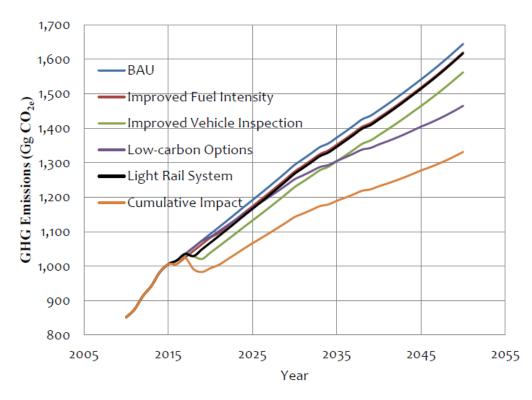


Figure 4.1: GHG emissions scenarios for land transport (source: TNC, 2016)

5.0 XLM– Transport Toolkit

The structure, methodology, and components/modules of the XLM Toolkits has been described in the main User Manual.

5.1 Transport Data

The data used in TNC 2016 appear in the 'Data' worksheet. These data are compiled by Statistics Mauritius.

5.2 Transport Parameters

Table 5.1 defines the major parameters used for the Transport sector (see TNC Report for details).

	MOB			1			or freight mobil	ity	
Ksat		10000				% share petro	l and diesel		Fuel intensity (L/tonne-k
k		-4.27E-04				Petrol	3%		0.0469
						Diesel	97%		0.0368
							Residual decre	eases by 7.1% p	er annum - 0.071
FUEL EMIS	SSION FACT	TORS							
1					NCV	EFCO2	EFCH4	EFN20	
	Fuel	kgCO2/TJ	kgCH4/TJ	kgN2O/TJ	TJ/Ggfuel	kgCO2/kgfuel	kgCH4/kgfuel	kgN2O/kgfuel	
	Gasoline	69300	33	3.2	44.8	3.10464	0.0014784	0.00014336	
	Diesel	74100	3.9	3.9	43.3	3.20853	0.00016887	0.00016887	
	LPG	63100	62	0.2	52.2	3.29382	0.0032364	0.00001044	
GLOBAL W	VARMING I	Potentiai			Ethanol param	ieters			
					Volume	2.00E+07	L		
	GW₽▼				NCV	27	TJ/Gg		
GHG 🔽	1				Gasoline equiv	valent			
GHG ▼ CO2	1								
	25				Volume	1.21E+07	L		

Table 5.1: List of Parameters for the Transport sector (see TNC Report (2016) for details)

Model parameters fo	r Fuel Dens	sities, kg/L		Model Parameters			Good Vehicles
Gasoline			0.710	Fuel Intensity (Petro	FI_X_P	L/100 km	20
Diesel			0.850	Occupancy (Petrol)	Oc_X_P	PAX	
LPG			0.557	Transit distance (Pet	TD_X_P	km/yr	
				Fuel Intensity (Diese		L/100 km	30
				Occupancy (Diesel)	Oc_X_D	PAX	
Model parameters fo	r Autocycle	s		Transit distance (Die Fuel Intensity (LPG)		km/yr L/100 km	
Parameter	Symbol	Units	Value	Occupancy (LPG)	FI_X_L Oc_X_L	PAX	
				Transit distance (LPC		km/yr	
Fuel intensity	FI_Ac	L/100km	2.5	Fuel Intensity (Hybri	1	L/100 km	
Vehicle occupancy	Oc	number of	1	Occupancy (Hybrid)	Oc_X_L	PAX	
Days utilised	DU	days/yr	300	Transit distance (Hy	TD_X_L	km/yr	
Transit distance	TD	km/yr	5,600				
				Model Parameters fo	ar Busas		
Model parameters fo	r Motorcyc	les		Fuel Intensity	FI_Bus	L/100km	30.
Fuel intensity	FI_Mc	L/100km	3	Occupancy	O_Bus	PAX	3
Vehicle occupancy	Oc	number of	1	Transit distance	 TD_Bus	km/yr	38,00
Days utilised	DU	days/yr	300	Psssenger daily tran	sit distance	PAX km / da	17
, Transit distance	TD	km/yr	5,600	Days per year			30
	10	kiii, ji	3,000	Annual bus passeng	ers		2.40E+0
Model Parameters			Car				
		L /1 00 lum	6.5	Allocation of total	PAX km by	/ fuel type	(%)
Fuel Intensity (Petrol	FI_X_P	L/100 km		Gasoline			54.93
Occupancy (Petrol)	Oc_X_P	PAX	1.9	Diesel			45.01
Transit distance (Pet	TD_X_P	km/yr	13,500	LPG			0.05
Fuel Intensity (Diese	FI_X_D	L/100 km	7				
Occupancy (Diesel)	Oc_X_D	PAX	1.9	Percentage allocat		km by typ	
Transit distance (Die	TD_X_D	km/yr	13,500		A/cycle		11.31
Fuel Intensity (LPG)	FI_X_L	L/100 km	8	Petrol	Cars M/cycle		77.79
Occupancy (LPG)	Oc_X_L	PAX	1.9		DPV		2.52
Transit distance (LPG	TD_X_L	km/yr	13,500		Hybrid		1.01
Fuel Intensity (Hybrid	FI_X_L	L/100 km	4	ΤΟΤΑΙ	TOTAL		100
Occupancy (Hybrid)	Oc_X_L	PAX	1.9				
Transit distance (Hyl		km/yr	13,500		Cars		8.46
inalisit distance (ily		кш/уг	13,300	Diesel	DPV Goods		12.20
					Vehicle		
			0.01/		Buses		79.35
Model Parameters			DPV	ΤΟΤΑΙ	TOTAL		100
Fuel Intensity (Petrol	FI_X_P	L/100 km	11.5		Carra		0454
Occupancy (Petrol)	Oc_X_P	PAX	1.9		Cars DPV		94.51 5.49
Transit distance (Pet	TD_X_P	km/yr	13500	LPG	Goods		5.45
Fuel Intensity (Diesel	FI_X_D	L/100 km	11.3		Vehicle		
Occupancy (Diesel)	Oc_X_D	PAX	1.9	ΤΟΤΑΙ	ΤΟΤΑΙ		100
Transit distance (Die	TD_X_D	km/yr	13,500	Cooperie 4 1 DT			
Fuel Intensity (LPG)	 FI_X_L	L/100 km	14.1	Scenario 4 LRT MLRT Car	Petrol		90.0
Occupancy (LPG)	Oc_X_L	PAX	1.9		Diesel		10.0
Transit distance (LPG	 TD_X_L	km/yr	13,500				10.0
		-	13,500				
Fuel Intensity (Hybrid	FI_X_L	L/100 km		Percentage Residual			7.1
Occupancy (Hybrid)	Oc_X_L	PAX		per annum - the 5 ye decline in consumpt			
Transit distance (Hyl	TDXL	km/yr			.011		

5.3 Transport Assumptions

	Tuble, 5.2. East of Assumptions for the Transport Sector
1	Annual Improvement in Fuel Economy by Fuel Type (%)
2	Improvements through better vehicle maintenance by Fuel Type (%)
3	Percentage allocation of PAX km by type of petrol vehicles
4	Penetration rate of Ethanol
5	MLRT: Reduction in car and bus annual distance travelled

Table: 5.2: List of Assumptions for the Transport sector

5.4 Graphic Analysis and Reporting

Graphic analysis in the 'Query' worksheet provides the following choices for the type of plots:

Sector	Type of Plot	Plot numbers
	ALL	1-158;
	Mobility	1-14; 80-85; 115-127;
Energy: Transport	Fuel Consumption	15-32; 46-49; 63-66;
Energy: Transport		86-101; 128-145;
	Total GHG Emissions (TNC)	33-45; 50-62; 67-79;
		102-114; 146-158;

The complete set of figures are listed in Table 5.3.

Table 5.3: Complete List of 2	Transport Sector Plots
-------------------------------	-------------------------------

Plot No.	Scenario	Description
1	BAU	Net Passenger Mobility (PAX km)
2	BAU	Passenger Mobility for All Gasoline Vehicles (PAX km)
3	BAU	Passenger Mobility for All Diesel Vehicles (PAX km)
4	BAU	Passenger Mobility for All LPG Vehicles (PAX km)
5	BAU	Passenger Mobility for Autocycles (PAX km)
6	BAU	Passenger Mobility for Motorcycles (PAX km)
7	BAU	Passenger Mobility for Petrol Cars (PAX km)
8	BAU	Passenger Mobility for Petrol DPVs (PAX km)
9	BAU	Passenger Mobility for Hybrid Cars (PAX km)
10	BAU	Passenger Mobility for Diesel Cars (PAX km)
11	BAU	Passenger Mobility for Diesel DPVs (PAX km)
12	BAU	Passenger Mobility for Buses (PAX km)
13	BAU	Passenger Mobility for LPG Cars (PAX- km)
14	BAU	Passenger Mobility for LPG DPVs (PAX km)
15	BAU	Fuel Consumption for Autocycles (tonne)
16	BAU	Fuel Consumption for Petrol Cars (tonne)
17	BAU	Fuel Consumption for Motorcycles (tonne)
18	BAU	Fuel Consumption for Petrol DPVs (tonne)
19	BAU	Fuel Consumption for Hybrid Cars (tonne)
20	BAU	Fuel Consumption for Petrol Good Vehicles (tonne)

Plot No.	Scenario	Description
21	BAU	Fuel Consumption for All Petrol Vehicles (tonne)
22	BAU	Fuel Consumption for Diesel Cars (tonne)
23	BAU	Fuel Consumption for Diesel DPVs (tonne)
24	BAU	Fuel Consumption for Buses (tonne)
25	BAU	Fuel Consumption for Diesel Freights (tonne)
26	BAU	Fuel Consumption for All Diesel Vehicles (tonne)
27	BAU	Fuel Consumption for LPG Cars (tonne)
28	BAU	Fuel Consumption for LPG DPVs (tonne)
29	BAU	Fuel Consumption- Residual (tonne)
30	BAU	Fuel Consumption for all LPG Vehicles (tonne)
31	BAU	10X Fuel Consumption: LPG (total) (tonne)
32	BAU	Fuel Consumption for ALL Vehicles (tonne)
33	BAU	CO2 Emissions from Petrol Vehicles (Gg/year)
34	BAU	CH4 Emissions from Petrol Vehicles (Gg/year)
35	BAU	N2O Emissions from Petrol Vehicles (Gg/year)
36	BAU	CO2 Emissions from Diesel Vehicles (Gg/year)
37	BAU	CH4 Emissions from Diesel Vehicles (Gg/year)
38	BAU	N2O Emissions from Diesel Vehicles (Gg/year)
39	BAU	CO2 Emissions from LPG Vehicles (Gg/year)
40	BAU	CH4 Emissions from LPG Vehicles (Gg/year)
41	BAU	N2O Emissions from LPG Vehicles (Gg/year)
42	BAU	Total CO2 Emissions from Vehicles (Gg/year)
43	BAU	Total CH4 Emissions from Vehicles (Gg/year)
44	BAU	Total N2O Emissions from Vehicles (Gg/year)
45	BAU	Total GHG (CO2e) Emissions from Vehicles (Gg/year)
46	SC1	Total Gasoline Consumption after Fuel Intensity Improvements (tonne)
47	SC1	Total Diesel Consumption after Fuel Intensity Improvements (tonne)
48	SC1	Total LPG Consumption after Fuel Intensity Improvements (tonne)
49	SC1	Total Fuel Consumption after Fuel Intensity Improvements (tonne)
50	SC1	CO2 Emissions from Petrol Vehicles after Fuel Intensity Improvements (Gg/year)
51	SC1	CH4 Emissions from Petrol Vehicles after Fuel Intensity Improvements (Gg/year)
52	SC1	N2O Emissions from Petrol Vehicles after Fuel Intensity Improvements (Gg/year)
53	SC1	CO2 Emissions from Diesel Vehicles after Fuel Intensity Improvements (Gg/year)
54	SC1	CH4 Emissions from Diesel Vehicles after Fuel Intensity Improvements (Gg/year)
55	SC1	N2O Emissions from Diesel Vehicles after Fuel Intensity Improvements (Gg/year)
56	SC1	CO2 Emissions from LPG Vehicles after Fuel Intensity Improvements (Gg/year)
57	SC1	CH4 Emissions from LPG Vehicles after Fuel Intensity Improvements (Gg/year)
58	SC1	N2O Emissions from LPG Vehicles after Fuel Intensity Improvements (Gg/year)
59	SC1	Total CO2 Emissions from Vehicles after Fuel Intensity Improvements (Gg/year)
60	SC1	Total CH4 Emissions from Vehicles after Fuel Intensity Improvements (Gg/year)
61	SC1	Total N2O Emissions from Vehicles after Fuel Intensity Improvements (Gg/year)
62	SC1	Total GHG (CO2e) Emissions from Vehicles after Fuel Intensity Improvements (Gg/year)
63	SC2	Total Gasoline Consumption after Improvements in Vehicle Maintenance (tonne)

Plot No.	Scenario	Description	
64	SC2	Total Diesel Consumption after Improvements in Vehicle Maintenance (tonne)	
65	SC2	Total Fuel Consumption after Improvements in Vehicle Maintenance (tonne)	
66	SC2	Total LG Consumption after Improvements in Vehicle Maintenance (tonne)	
67	SC2	CO2 Emissions from Petrol Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
68	SC2	CH4 Emissions from Petrol Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
69	SC2	N2O Emissions from Petrol Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
70	SC2	CO2 Emissions from Diesel Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
71	SC2	CH4 Emissions from Diesel Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
72	SC2	N2O Emissions from Diesel Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
73	SC2	CO2 Emissions from LPG Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
74	SC2	CH4 Emissions from LPG Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
75	SC2	N2O Emissions from LPG Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
76	SC2	Total CO2 Emissions from Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
77	SC2	Total CH4 Emissions from Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
78	SC2	Total N2O Emissions from Vehicles after Improvements in Vehicle Maintenance (Gg/year)	
79	SC2	Total GHG (CO2e) Emissions from Vehicles after Improvements in Vehicle M. (Gg/year)	
80	SC3	Passenger Mobility for Autocycles with H/E Vs substitutes (PAX km)	
81	SC3	Passenger Mobility for Motorcycles with H/E Vs substitutes (PAX km)	
82	SC3	Passenger Mobility for Petrol Cars with H/E Vs substitutes (PAX km)	
83	SC3	Passenger Mobility for Petrol DPVs with H/E Vs substitutes (PAX km)	
84	SC3	Passenger Mobility for Hybrid Vs with H/E Vs substitutes (PAX km)	
85	SC3	Passenger Mobility for Electric Vs with H/E Vs substitutes (PAX km)	
86	SC3	Fuel Consumption for Autocycles with H/E Vs substitutes (tonne)	
87	SC3	Fuel Consumption for Motorcycles with H/E Vs substitutes (tonne)	
88	SC3	Fuel Consumption for Petrol Cars with H/E Vs substitutes (tonne)	
89	SC3	Fuel Consumption for DPVs with H/E Vs substitutes (tonne)	
90	SC3	Fuel Consumption for Hybrid Cars with H/E Vs substitutes (tonne)	
91	SC3	Fuel Consumption for Goods Vehicles with H/E Vs substitutes (tonne)	
92	SC3	Total Gasoline Consumption with H/E Vs substitutes (tonne)	
93	SC3	Total Diesel Consumption with H/E Vs substitutes (tonne)	
94	SC3	Total LPG Consumption with H/E Vs substitutes (tonne)	
95	SC3	Total Fuel Consumption with H/E Vs substitutes (tonne)	
96	SC3	Total Gasoline Consumption with H/E Vs substitutes (tonne)	
97	SC3	Ethanol Consumption (Gasoline Equivalence) (tonne)	
98	SC3	Total Gasoline Consumption under low-carbon options (tonne)	
99	SC3	Total Diesel Consumption under low-carbon options (tonne)	
100	SC3	Total LPG Consumption under low-carbon options (tonne)	
101	SC3	Total Fuel Consumption under low-carbon options (tonne)	
102	SC3	CO2 Emissions from Petrol Vehicles under low-carbon options (Gg/year)	
103	SC3	CH4 Emissions from Petrol Vehicles under low-carbon options (Gg/year)	
104	SC3	N2O Emissions from Petrol Vehicles under low-carbon options (Gg/year)	
105	SC3	CO2 Emissions from Diesel Vehicles under low-carbon options (Gg/year)	
106	SC3	CH4 Emissions from Diesel Vehicles under low-carbon options (Gg/year)	

Plot No.	Scenario	Description	
107	SC3	N2O Emissions from Diesel Vehicles under low-carbon options (Gg/year)	
108	SC3	CO2 Emissions from LPG Vehicles under low-carbon options (Gg/year)	
109	SC3	CH4 Emissions from LPG Vehicles under low-carbon options (Gg/year)	
110	SC3	N2O Emissions from LPG Vehicles under low-carbon options (Gg/year)	
111	SC3	Total CO2 Emissions from Vehicles under low-carbon options (Gg/year)	
112	SC3	Total CH4 Emissions from Vehicles under low-carbon options (Gg/year)	
113	SC3	Total N2O Emissions from Vehicles under low-carbon options (Gg/year)	
114	SC3	Total GHG (CO2e) Emissions from Vehicles under low-carbon options (Gg/year)	
115	SC4	MLRT Car Passenger Mobility (PAX km)	
116	SC4	Passenger Mobility for Autocycles with MLRT (PAX km)	
117	SC4	Passenger Mobility for Motorcycles with MLRT (PAX km)	
118	SC4	Passenger Mobility for Petrol Cars with MLRT (PAX km)	
119	SC4	Passenger Mobility for Petrol DPVs with MLRT (PAX km)	
120	SC4	Passenger Mobility for Hybrids with MLRT (PAX km)	
121	SC4	MLRT Bus Passenger Mobility (PAX km)	
122	SC4	Passenger Mobility for Buses with MLRT (PAX km)	
123	SC4	Passenger Mobility for Diesel Cars with MLRT (PAX km)	
124	SC4	Passenger Mobility for Diesel DPVs with MLRT (PAX km)	
125	SC4	Reduction in Passenger Mobility by Buses with MLRT (PAX km)	
126	SC4	Passenger Mobility for LG Cars with MLRT (PAX km)	
127	SC4	Passenger Mobility for LPG DPVs with MLRT (PAX km)	
128	SC4	Fuel Consumption for Autocycles with MRLT (tonne)	
129	SC4	Fuel Consumption for Motorcycles with MRLT (tonne)	
130	SC4	Fuel Consumption for Petrol Cars with MRLT (tonne)	
131	SC4	Fuel Consumption for Petrol DPVs with MRLT (tonne)	
132	SC4	Fuel Consumption for Hybrids with MRLT (tonne)	
133	SC4	Fuel Consumption for Goods Vehicles with MRLT (tonne)	
134	SC4	Total Gasoline Consumption for Petrol Vs with MRLT (tonne)	
135	SC4	Fuel Consumption for Diesel Cars with MRLT (tonne)	
136	SC4	Fuel Consumption for Diesel DPVs with MRLT (tonne)	
137	SC4	Fuel Consumption for Diesel Buses with MRLT (tonne)	
138	SC4	Fuel Consumption for Diesel Freights with MRLT (tonne)	
139	SC4	Total Fuel Consumption for Diesel Vehicles with MRLT (tonne)	
140	SC4	Fuel Consumption for LPG Cars with MRLT (tonne)	
141	SC4	Fuel Consumption for LPG DPVs with MRLT (tonne)	
142	SC4	LPG Residual with MRLT (tonne)	
143	SC4	Total Consumption for LPG Vehicles with MRLT (tonne)	
144	SC4	10X Total Consumption for LPG Vehicles with MRLT (tonne)	
145	SC4	Total Fuel Consumption for ALL Vehicles with MRLT (tonne)	
146	SC4	CO2 Emissions from Petrol Vehicles with MLRT System (Gg/year)	
147	SC4	CH4 Emissions from Petrol Vehicles with MLRT System (Gg/year)	
148	SC4	N2O Emissions from Petrol Vehicles with MLRT System (Gg/year)	
149	SC4	CO2 Emissions from Diesel Vehicles with MLRT System (Gg/year)	

Plot No.	Scenario	Description	
150	SC4	CH4 Emissions from Diesel Vehicles with MLRT System (Gg/year)	
151	SC4	N2O Emissions from Diesel Vehicles with MLRT System (Gg/year)	
152	SC4	CO2 Emissions from LPG Vehicles with MLRT System (Gg/year)	
153	SC4	CH4 Emissions from LPG Vehicles with MLRT System (Gg/year)	
154	SC4	N2O Emissions from LPG Vehicles with MLRT System (Gg/year)	
155	SC4	Total CO2 Emissions from Vehicles with MLRT System (Gg/year)	
156	SC4	Total CH4 Emissions from Vehicles with MLRT System (Gg/year)	
157	SC4	Total N2O Emissions from Vehicles with MLRT System (Gg/year)	
158	SC4	Total GHG (CO2e) Emissions from Vehicles with MLRT System (Gg/year)	

6.0 References

- **TNC (2016).** Third National Communication: Report to the United Nations Framework Convention on Climate Change. Republic of Mauritius, Port Louis
- **IPCC (2006).** Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

7.0 Appendices

A: List of Acronyms and Abbreviations

Toolkit		Others	
BAU	Business-As-Usual	IPCC	International Panel of Climate Change
GUI	Graphics User Interface	TNC	Third National Communications
UD1	User-defined Scenario - Case 1	GHG	Greenhouse Gas
UD2	User-defined Scenario - Case 2	GWP	Global Warming Potential
SCi	Scenario i		
XLMT	Excel Mitigation Toolkit		

B: Useful Links

Click for access to these links

IPCC TNC NTA Digest transport and others Digest demography

C: Governing Equations for the Transport sector

The sector derives its GHG emissions and projections from modelled passenger and freight transport. Thus the fuels consumed by type, are derived from vehicle fleet and their uses, which in turn provides the data needed for calculations of GHG emissions.

Passenger Mobility

The passenger transport or mobility, as explained in the TNC, is drawn from the equation (see TNC Report for details):

 $Y = Y_{Sat} \left[1 - e^{kx} \right] \qquad (I)$

where:

 $Y_{sat} = 10\ 000\ \text{km/capita/yr},$

 $k= -4.27 \text{ x } 10^{-4}$, and

x = GDP (constant 1980 US\$) per capita.

Freight Mobility

Freight mobility measured in tonne of freight/goods km per capita, is parametrized as a linear relationship to economic growth as follows:

$$\mathbf{Y} = \mathbf{a}\mathbf{x} + \mathbf{b} \quad (\mathbf{II})$$

where: a = 0.52, and b = 26.16.

Once the above have been obtained, they are used to calculate the fuel consumed by type such as diesel, petrol, etc.

These fuels are then multiplied by the respective emission factors.

Emissions GHG_i = AD_i x EF_i

where

i = Type of fuel

AD = Fuel consumed, TJ (Can be converted from kg or tonnes)

EF = Emission factor, kg GHG/TJ Fuel

For projections, several assumptions are made, as explained in the TNC Report, 2016.

CO ₂ FROM ROAD TRANSPORT					
	$Emission = \sum_{a} [Fuel_{a} \bullet EF_{a}]$				
where	а				
Emission	Emission = Emissions of CO_2 (kg)				
Fuel _a	= fuel sold (TJ)				
EF_{a}	= emission factor (kg/TJ). This is equal to the carbon content of the fuel multiplied by $44/12$.				
а	= type of fuel (e.g. petrol, diesel, natural gas, LPG etc)				
	TIER 1 EMISSIONS OF CH_4 AND N_2O				
	$Emission = \sum_{a} [Fuel_{a} \bullet EF_{a}]$				
where	a				
Emissio	ns = emission in kg				
EFa	= emission factor (kg/TJ)				
Fuel _a	= fuel consumed, (TJ) (as represented by fuel sold)				
а	= fuel type a (e.g., diesel, gasoline, natural gas, LPG)				
	TIER 2 EMISSIONS OF CH_4 AND N_2O				
	$Emission = \sum_{a,b,c} [Fuel_{a,b,c} \bullet EF_{a,b,c}]$				
where					
	n = emission in kg.				
EF _{a.b.c}	= emission factor (kg/TJ)				
Fuel _{a,b,c}	= fuel consumed (TJ) (as represented by fuel sold) for a given mobile source activity				
a	= fuel type (e.g., diesel, gasoline, natural gas, LPG)				
b	= vehicle type				
с	= emission control technology (such as uncontrolled, catalytic converter, etc)				