

XLM-AGRICULTURAL LIVESTOCK TOOLKIT

User Manual

AUGUST 1, 2017

Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division)

Republic of Mauritius

XL-Mitigation Livestock Toolkit

About this manual

This manual, XL-Mitigation Livestock User Reference, forms part of a family of toolkits to compute and plot a number of other variables including GHG emissions for Agricultural Livestock sector. The user reference has been written from an application developer's perspective. A fundamental conceptual and operational knowledge of Excel is assumed.

Disclaimer

Data used has been obtained from reliable sources. The Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division) assumes no responsibility for errors and omissions in the data provided. Users are, however, kindly asked to report any errors or deficiencies in this product to the Ministry. The choices of calculation made in this tool are derived from TNC Report (2016).

Copyright

©2017 Government of Mauritius and United Nations Environment Programme

All rights reserved. No part of this Guideline and/or Toolkit may be produced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission from the Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division) and the United Nations Environment Programme. Results based on the use of the Toolkit must be duly acknowledged and referenced; the copyright holder's endorsement of Users' views, products or services shall not be implied in any way.

Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division)

Ken Lee Tower, Corner St Georges and Barrack Streets

Port Louis, Mauritius Phone: +(230) 203 6200

Fax: +(230) 212 9407 Email: menv@govmu.org

Website:

http://environment.govmu.org

United Nations Environment Programme

Division of Technology, Industry and Economics, DTIE

P.O. Box 30552 Nairobi, Kenya

Tel:+(254-20)7625264

Fax :+(33-1) 4437-1474 Website: http://www.unep.org/

Global Environment Facility

1818 H Street, NW Washington, USA

Tel:+(202) 473 3202

Fax :+(202) 522 3240 Email: gefceo@thegef.org

Website: www.thegef.org

XLM-Livestock Toolkit

Table of Contents

1.0 Introduction	4
2.0 Overview of the Agricultural Livestock sector	4
3.0 GHG Emissions for the Livestock sector	5
4.0. Mitigation Actions proposed under TNC for the Livestock sector	6
4.1 Mitigation Scenarios and Assumptions	6
4.2 TNC Targets under different scenarios	6
5.0 XLM-Livestock Toolkit	8
5.1 Livestock Data	8
5.2 Livestock Parameters	8
5.3 Livestock Assumptions	11
5.4 Graphic Analysis and Reporting	11
6.0 References	14
7.0 Appendices	15

XLM-Livestock Toolkit

1.0 Introduction

This document refers to the agricultural livestock sector.

The mitigation for this sector was assessed in the Third National Communications (TNC) Report (2016) for a Business-as-Usual (BAU) and Policy scenarios, after a screening exercise to select the most feasible options. BAU refers to the expected change in GHG emissions from the sector in the absence of the Strategic Plan 2016 – 2020 of the Ministry of Agro-Industry and Food Security (2016) involving the old technology for which the livestock manure management remains unchanged. The Policy scenarios consider both the old technology and new technology (which incorporates changes in the manure management systems used in rearing), but with an increased livestock to enhance food security.

The XLM-Livestock Toolkit performs basic calculations that take into account principally the number of animal heads considering the type of technology with regards to the manure management. The trend for livestock population until 2050 are worked out following assumptions used by TNC (2016). Users of the XLM-Livestock Toolkit can adjust the scenarios by choosing appropriate parameters/ assumptions to suit their needs for the mitigation analysis.

2.0 Overview of the Agricultural Livestock sector

The Agriculture sector share 4% of the total GDP; out of which livestock (including poultry) contributes 22% in this sector (Statistics Mauritius, 2015).

The livestock sector is dominated by poultry (broiler chicken and eggs) for which self-sufficiency has been reached since a number of years. For the period 2006 -2013, FAREI's resource profile study revealed that most cattle are kept in stall followed by pasture to a least extent. Grazing large areas category is non-existent in Mauritius. Goats, pigs and sheep are mostly confined in buildings. Broilers are reared on litter flooring whereas for layers, the birds are kept in cages (except for pullets, the birds are reared on litter floor for a period of 5 months). All broilers and layers are confined in buildings. For deer, two types of deer farming can be observed namely extensive (wild) and intensive (paddocks). The number of livestock by type as at December 2015 is shown below (see FACTS (2015)).

The livestock sector is vulnerable to pests and diseases. Soil erosion has become a major problem and soil fertility has been considerably reduced. Fodder is available only on high ground and has almost disappeared from the coastal region. Consequently, livestock suffers from the change in climate patterns.

FACTS (2015): Number of Heads

Cattle#: 5	5,898	Poultry*: 6 million
Goat#: 2	26,809	Deer* (on paddock system): 16,000
Sheep#: 2	2,752	Horse ^{\$} : 855
Pigs [#] : 2	21,964	

^{*}Digest of Agricultural Statistics (2015) *FAREI estimate \$MTC

3.0 GHG Emissions for the Livestock sector

Livestock, with enteric fermentation and manure management contributes to GHG emissions, of which almost half came from Rodrigues which has an important livestock population. The common manure management system/fraction (as defined in the revised IPCC guidelines 2006 pp10.62-10.63 table 10.21), observed locally, is summarized as follows:

- Cattle (pasture, solid storage, anaerobic digester, dry lot and anaerobic lagoon);
- Goats and sheep (pasture and solid storage);
- Pig (solid storage and anaerobic digester);
- Poultry (poultry with beddings and poultry without beddings); and
- Deer (paddock).

For the period 2000 to 2013, Figure 3.1 shows the trend of emissions as well as the sink for the whole AFOLU sector.



Figure 3.1: Trend of emissions for AFOLU Sector, including livestock sector (enteric and manure) (source: TNC, 2016)

4.0. Mitigation Actions proposed under TNC for the Livestock sector

4.1 Mitigation Scenarios and Assumptions

Relative to the BAU scenario, the Policy scenarios with new/old technologies with respect to manure management were developed in TNC (2016). The assumptions adopted by TNC for mitigations actions for the livestock sector are summarized in Table 4.1.

Table 4.1: Mitigation scenarios for the Livestock sector (TNC 2016)

Mitigation scenarios		Assumptions
BAU	Business-As-Usual	The assumptions involve adoption of old technology (prior to 2014) with regards to manure management with an estimated animal head numbers.
BAU- Enteric	Business-As-Usual (Enteric)	As BAU for Enteric Fermentation.
SC1	Policy Scenario to enhance food security using old technology	This scenario assumes old technology with regards to manure management with an increased livestock to enhance food security.
SC2	Policy Scenario to enhance food security using new technology	This scenario considers new technology which incorporates changes in the manure management systems used in rearing, with an increased livestock to enhance food security. The penetration of anaerobic treatment of manure is expected to increase in the future compared to solid storage or aerobic treatment of manure.
SC3	Policy Scenario (Enteric)	As SC2 for Enteric Fermentation.

The parameters used for the different scenarios appear in section 5.2.

4.2 TNC Targets under different scenarios

The mitigation scenarios including BAU have emissions as shown in Table 4.2.

Under the BAU scenario, the total livestock GHG emissions (combined emissions from enteric fermentation and manure management) are relatively small; either component contributing to nearly half of the total emissions (see Figure 4.1).

Under the Policy scenario that favours enhanced livestock rearing for increasing the national food security, there is a significant increase in GHG emissions to reach 50 Gg CO2e by 2050; emissions from enteric fermentation occupying a higher share in total livestock emissions.

Table 4.2: GHG Emissions (Gg CO2e)* for the Agricultural Livestock sector

Scenario	2020	2025	2030	2035	2040	2045	2050
BAU – Enteric fermentation	19.6	19.2	19.1	19.1	19.2	19.4	19.5
BAU – Enteric and manure management	34.7	34.5	34.7	35.4	36.2	36.8	37.5
SC1: Policy Scenario (with old technology)	36.5	38.2	39.9	42.8	45.8	48.6	51.3
SC2: Policy Scenario (with new technology)	36.4	38.1	39.9	42.6	45.2	47.5	49.8
SC3: Policy Scenario - Enteric	21.5	22.5	23.7	25.4	27.1	28.7	30.4

*To convert to tonnes CO2e, multiply the numbers by 1000

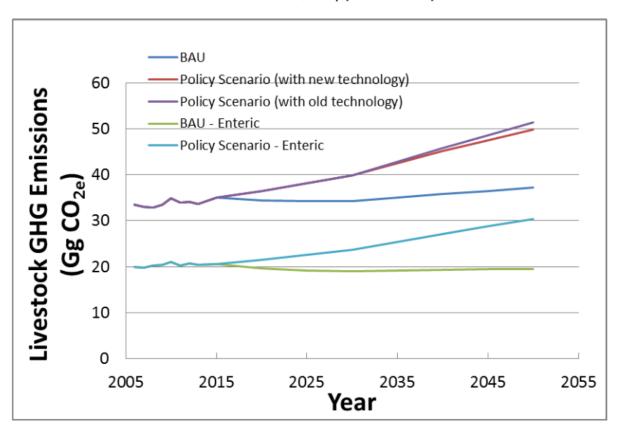


Figure 4.1: GHG emissions scenarios for the livestock sector (source: TNC, 2016)

5.0 XLM-Livestock Toolkit

The structure, methodology, and components/modules of the XLM Toolkits has been described in the main User Manual.

5.1 Livestock Data

Species	Data Sources	Remarks
Dairy cows, other cattle, Sheep, Goats and Pigs	Population data were obtained from Food and Agricultural Research and Extension Institute (FAREI) and Digest of Agricultural Statistics. Imported sheep, goats and cattle figures were obtained from MMA slaughter statistics.	The imports data exclude animals slaughtered for religious purposes.
Deer	The deer population of 16,000 on paddock was estimated based on previous records available at FAREI.	
Poultry	The data for poultry was deduced from production data quoted from Food Balance sheet of the Digest of Agricultural Statistics and formulated production technical assumptions. The data for duck was obtained from FAREI and Animal Production Division (APD) of the MOAFS.	

5.2 Livestock Parameters

Whilst Users would not change the parameter values, they can do so, if required, in the user-defined worksheets (UD1 and UD2). For permanent alterations, Users must approach the sectoral chair for changes; in which case the default values are modified by the chair. Users should consult the XLM Toolkit sheets' data to understand the parameter details listed in this manual.

Tables 5.1 presents the major parameters used for the livestock sector.

Table 5.1: List of Parameters for the emissions calculations for livestock sector

(parameters can only be changed by sectoral chair)

Livestock sub category	@ Typical animal mass (TAM) (kg)	# CH4 Emission factor from enteric fermentation (kgCH4/(head/ year)	# CH4 Emission factor from manure management (kgCH4/(head/ year)	# Excretion rate/mass/day (Nrate)
Dairy cow	400	46	1	0.73
Bull	200	31	1	0.73
Calf	75	31	1	0.73
Heifer	150	31	1	0.73
Imported bull	500	31	1	0.73
Sheep	45	5	0.15	1.17
Goat	30	5	0.17	1.37
Horse#	377	18	1.64	0.46
Mule & Asses		10	0.9	0.46
Boar	150	1	1	0.55
Fattener	90	1	1	1.57
Piglet	13	1	1	1.57
sow/gilt	125	1	1	0.55
Broiler	1.8		0.02	1.1
Broiler parent	2.1		0.03	0.82
Layer/Parent	1.8		0.03	0.82
Duck	2.5		0.03	0.83
Deer	60	20	0.22	1.17

@FAREI # IPCC 2006

GWP CH4	25
GWP N20	298
Conversion Factor	1.571428571

Region (temp)	Livestock subcategory	Emission factor for direct N2O from MMS						
		Solid storage	Pasture range paddock	Dry lot	Anaerobic digester	Aerobic treatment	Poultry with litter	Poultry without litter
	Dairy cow	0.005						
	Bull	0.005						
	Calf	0.005						
22	Heifer	0.005						
22	Boar	0.005						
	Fattener	0.005						
	Piglet	0.005						
	sow/gilt	0.005						
	Dairy cow	0.005						
	Bull	0.005						
24	Calf	0.005						
	Heifer	0.005						
	Boar	0.005			0	0.01		
	Fattener	0.005			0	0.01		
	Piglet	0.005			0	0.01		
	sow/gilt	0.005			0	0.01		
	Dairy cow	0.005						
	Bull	0.005						
	Calf	0.005						
	Heifer	0.005						
25	Imported bull	0.005		0.02				
	Boar	0.005		0.02	0	0.01		
	Fattener	0.005		0.02	0	0.01		
	Piglet	0.005		0.02	0	0.01		
	sow/gilt	0.005		0.02	0	0.01		
	Sheep	0.005		0.02				
Mauritius Average	Goat	0.005		0.02				
	Horse			1				
							0.001	0.001
	Broiler parent			1			0.01	0.01
	Layer/Parent			1			0.01	0.01
	Duck			1			0.01	0.01
	Deer		N/A					

breakdown since 2013		
PIGS	Heads (ratio)	
boars	0.02	
sows/gilts	0.18	
piglets	0.25	
fatteners	0.55	

5.3 Livestock Assumptions

The assumptions used here are the same as TNC that is the animal heads by species (Table 5.2). These assumptions under the Policy scenario are further divided into the type of technology; new technology favouring the choice for enhancing food security.

Table: 5.2: List of Main Assumptions for the livestock sector

1	Animal Heads by Species
2	Technology Options

5.4 Graphic Analysis and Reporting

The complete set of figures useful to the User is listed in Table 5.3. The far right column denotes the general topic or item for which the plots can be generated for graphical analysis. The leftmost column denotes the plot number that can be identified and generated.

Graphic analysis in the 'Query' worksheet provides the following choices categorized as follows for the Livestock sector:

Sector	Category	Plot numbers
	All	1-111;
	Population	BAU: 1-12;
		Policy: 13-24;
	Emissions from Enteric Fermentation	BAU: 25-32;
		Policy: 50-57;
	CH4 Emissions	BAU: 33-41;
Agriculture		Policy: 58-66;
Livestock	N2O Emissions	BAU 42-48;
		Policy 67-73;
	Policy with New Technologies	Policy 50-66; 67-74;
	Policy with Old Technologies	Policy 75-84;
	GHG Emissions	BAU: 85-93;
	STO Emissions	Policy: 94-102; 103-111;
	Total GHG Emissions (TNC)	32, 49, 57, 74, 84;

Table 5.3: List of Graphics for the Livestock sector

Plot No.	Scenario	Plot Title	
1	BAU	Goat Population	
2	BAU	Sheep Population	
3	BAU	Horse Population	B
4	BAU	Deer Population	AU
5	BAU	Broiler Population)/1
6	BAU	Layers and parent Population	ook
7	BAU	Duck Population	ou.
8	BAU	Lock Sum	BAU / Population
9	BAU	Cattle (Diary) Population	on
10	BAU	Cattle (Non Dairy) Population	
11	BAU	Cattle (Imported) Population	
12	BAU	Pigs (Population)	
13	Pol	Goat Population	
14	Pol	Sheep Population	Po
15	Pol	Horse Population	olic
16	Pol	Deer Population	y s
17	Pol	Broiler Population	ice
18	Pol	Layers and parent Population	nai
19	Pol	Duck Population	rio
20	Pol	Lock Sum	/ P
			Policy Scenario / Population
21	Pol	Cattle (Diary) Population	ula
22	Pol	Cattle (Non Dairy) Population	tio
23	Pol	Cattle (Imported) Population	ň
24	Pol	Pigs (Population)	
25	BAU	GHG Emissions (Enteric) for Dairy Cows (Gg CO2e)	В
26	BAU	GHG Emissions (Enteric) for Other Cattle (Gg CO2e)	AL fr
27	BAU	GHG Emissions (Enteric) for Sheep (Gg CO2e)	J - I om
28	BAU	GHG Emissions (Enteric) for Goats (Gg CO2e)	Emi En
29	BAU	GHG Emissions (Enteric) for Horses (Gg CO2e)	BAU - Emissions from Enteric Fermentation
30	BAU	GHG Emissions (Enteric) for Pigs (Gg CO2e)	on ric on
31	BAU	GHG Emissions (Enteric) for Deer (Gg CO2e)	S
32	BAU	TOTAL GHG Emissions - Enteric (Gg CO2e)	
33	BAU	CH4 Emissions from LMM for Dairy Cows (Gg CO2e)	En
34	BAU	CH4 Emissions from MMS for Other Cattles (Gg CO2e)	BA nis:
35	BAU	CH4 Emissions from LMM for Sheep (Gg CO2e)	U -
36	BAU	CH4 Emissions from LMM for Goats (Gg CO2e)	Di ns
37	BAU	CH4 Emissions from LMM for Horses (Gg CO2e)	rec
38	BAU	CH4 Emissions from LMM for Pigs (Gg CO2e)	BAU - Direct CH4 missions from LMM
39	BAU	CH4 Emissions from LMM for Poultry (Gg CO2e)	14 M
40	BAU	CH4 Emissions from LMM for Deers (Gg CO2e)	3
41	BAU	Total CH4 Emissions under LMM (Gg CO2e)	
42	BAU	N2O Emissions from LMM for Dairy Cows (Gg CO2e) N2O Emissions from LMM for Other Cattles (Gg CO2e)	Εm
	BAU	, ,	BAU N2O Emissions from LMM
44	BAU	N2O Emissions from LMM for Sheep (Gg CO2e)	AU N2 sions LMM
45	BAU	N2O Emissions from LMM for Goats (Gg CO2e)	BAU N2O issions fr
46 47	BAU	N2O Emissions from LMM for Poultry (Gg CO2e)	O fro
	BAU	N2O Emissions from LMM for Poultry (Gg CO2e) Total N2O Emissions from LMM (Gg CO2e)	3
48	BAU	Total N2O Emissions from LMM (Gg CO2e)	Dati
49	BAU	Total Emissions under LMM (Gg CO2e)	BAU

50	Pol	GHG Emissions (Enteric) for Dairy Cows (Gg CO2e)			
51	Pol	GHG Emissions (Enteric) for Other Cattle (Gg CO2e)	Policy Scenario - Emissions from Enteric Fermentation		
52	Pol	GHG Emissions (Enteric) for Sheep (Gg CO2e)	Policy Scenario - issions from Ent Fermentation		
53	Pol	GHG Emissions (Enteric) for Goats (Gg CO2e)	y So ns f		
54	Pol	GHG Emissions (Enteric) for Horses (Gg CO2e)	cen ror		
55	Pol	GHG Emissions (Enteric) for Pigs (Gg CO2e)	ari n E tio		
56	Pol	GHG Emissions (Enteric) for Deer (Gg CO2e)	o - nte		
57	Pol	TOTAL GHG Emissions - Enteric (Gg CO2e)	eric		
58	Pol	CH4 Emissions from MMS for Dairy Cows (Gg CO2e)	CH P		
59	Pol	CH4 Emissions from MMS for Other Cattles (Gg CO2e)	olio 14 E		
60	Pol	CH4 Emissions from MMS for Sheep (Gg CO2e)	cy s imi		
61	Pol	CH4 Emissions from MMS for Goats (Gg CO2e)	Policy scenario - Direct N2O Emissions from MMS MMS		
62	Pol	CH4 Emissions from MMS for Horses (Gg CO2e)	nar		
63	Pol	CH4 Emissions from MMS for Pigs (Gg CO2e)	io .		
64	Pol	CH4 Emissions from MMS for Poultry (Gg CO2e)	om		
65	Pol	CH4 Emissions from MMS for Deer (Gg CO2e)	ĭ ie		
66	Pol	TOTAL CH4 Emissions under LMM (Gg CO2e)	ct		
67	Pol/NT	N2O Emissions from new MMS for Dairy Cows (Gg CO2e)	N2 F		
68	Pol/NT	N2O Emissions from MMS for Other Cattles (Gg CO2e)	0 10		
69	Pol/NT	N2O Emissions from new MMS for Sheep (Gg CO2e)	Policy scenario 20 Emissions fr MMS		
70	Pol/NT	N2O Emissions from new MMS for Goats (Gg CO2e)	y scen nissio MMS		
71	Pol/NT	N2O Emissions from new MMS for Pigs (Gg CO2e)	ina ons S		
72	Pol/NT	N2O Emissions from new MMS for Poultry (Gg CO2e)	rio s fra		
73	Pol/NT	Total N2O Emissions new MMS (Gg CO2e)	- om		
74	Pol/NT	Total Emissions under new MMS (Gg CO2e)	Pol		
75	Pol/OT	TOTAL GHG Emissions - Enteric (Gg CO2e)	T		
76	Pol/OT	Total CH4 Emissions under old MMS (Gg CO2e)	Pol		
77	Pol/OT	N2O Emissions under old MMS for Dairy Cows (Gg CO2e)	licy Ino		
78	Pol/OT	N2O Emissions under old MMS for Other Cattles (Gg CO2e)	icy Scenario with nological change livestock manure		
79	Pol/OT	N2O Emissions under old MMS for Sheep (Gg CO2e)	ena ica ock		
80	Pol/OT	N2O Emissions under old MMS for Goats (Gg CO2e)	aric C m		
81	Pol/OT	N2O Emissions under old MMS for Pigs (Gg CO2e)) w tan		
82	Pol/OT	N2O Emissions under old MMS for Poultry (Gg CO2e)	ith ge ure		
83	Pol/OT	TOTAL N2O Emissions under old MMS (Gg CO2e)	Policy Scenario without Technological change from livestock manure		
84	Pol/OT	TOTAL Emissions under old MMS (Gg CO2e)	3		

85	BAU	Total Emissions for Dairy Cows (Gg CO2e)	
86	BAU	Total Emissions for Other Cattles (Gg CO2e)	
87	BAU	Total Emissions for all Cattles	
88	BAU	Total Emissions for Sheep (Gg CO2e)	
89	BAU	Total Emissions for Goats (Gg CO2e)	BAU
90	BAU	Total Emissions for Horses (Gg CO2e)	J
91	BAU	Total Emissions for Pigs (Gg CO2e)	
92	BAU	Total Emissions for Poultry (Gg CO2e)	
93	BAU	Total Emissions for Deer (Gg CO2e)	
94	Pol/NT	Total Emissions for Dairy Cows (Gg CO2e)	
95	Pol/NT	Total Emissions for Other Cattles (Gg CO2e)	
96	Pol/NT	Total Emissions for all Cattles	
97	Pol/NT	Total Emissions for Sheep (Gg CO2e)	Рс
98	Pol/NT	Total Emissions for Goats (Gg CO2e)	Pol/NT
99	Pol/NT	Total Emissions for Horses (Gg CO2e)	=
100	Pol/NT	Total Emissions for Pigs (Gg CO2e)	
101	Pol/NT	Total Emissions for Poultry (Gg CO2e)	
102	Pol/NT	Total Emissions for Deer (Gg CO2e)	
103	Pol/OT	Total Emissions for Dairy Cows (Gg CO2e)	
104	Pol/OT	Total Emissions for Other Cattles (Gg CO2e)	
105	Pol/OT	Total Emissions for all Cattles	
106	Pol/OT	Total Emissions for Sheep (Gg CO2e)	Po
107	Pol/OT	Total Emissions for Goats (Gg CO2e)	Pol/OT
108	Pol/OT	Total Emissions for Horses (Gg CO2e))T
109	Pol/OT	Total Emissions for Pigs (Gg CO2e)	
110	Pol/OT	Total Emissions for Poultry (Gg CO2e)	
111	Pol/OT	Total Emissions for Deer (Gg CO2e)	

6.0 References

- Digest of Agricultural Statistic (2015)
- FAREI
- IPCC guidelines 2006
- Strategic Plan 2016 2020 of the Ministry of Agro-Industry and Food Security (2016)
- TNC (2016). Third National Communication: Report to the United Nations Framework Convention on Climate Change. Republic of Mauritius, Port Louis
- **IPCC** (2006). Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

7.0 Appendices

A: List of Acronyms and Abbreviations

Toolkit				
BAU	Business as Usual			
Fb	Fraction of available area burned			
GUI	Graphics User Interface			
LMM	Livestock Manure Management			
MB	Mass of Fuel available for burning			
Pol	Policy Scenario Population			
Pol/NT	Policy with New Technology			
Pol/OT	Policy with Old Technology			
TAM	Typical Animal Mass			
UD1	User-defined Scenario – Case 1			
UD2	User-defined Scenario – Case 2			
SCi	Scenario i			
XLMT	Excel Mitigation Toolkit			
	Others			
APD	Animal Production Division			
FAREI	Food and Agricultural Research and Extension Institute			
GDP	Gross Domestic Product			
GWP	Global Warming Potential			
IPCC	International Panel of Climate Change			
MoAIFS	Ministry of Agro-Industry and Food Security			
	(MOAFS in section 1.5)			
MMA	Mauritius Meat Authority			
MMS	Manure Management System			
MTC	Mauritius Turf Club			
TNC	Third National Communications			

B: Useful Links

IPCC 2006 for livestock

General IPCC 2006 for AFOLU

<u>TNC</u>

Stats: digest of agricultural statistics

Others (statistics)

C: Glossary

Enteric fermentation	is a digestive process by which carbohydrates are broken down by microorganisms into simple molecules for absorption into the bloodstream of an animal. At the same time methane (CH ₄) byproduct is <u>belched</u> by the animal and passed out as flatulence.(in a small percentage) from the <u>large intestine</u> . The ruminant gut structure fosters extensive enteric fermentation of their diet. Ruminant livestock (e.g., cattle, sheep) are major sources of methane with moderate amounts produced from non-ruminant livestock (e.g., pigs, horses).		
Manure management system	refers to the storage and treatment of manure, including from manure deposited on pasture. The term 'manure' is used here collectively to include both dung and urine.		
Pasture/Range/Padd ock	The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.		
Solid storage	The storage of manure, typically for a period of several months, in unconfined piles or stacks.		
Dry lot	A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.		
Anaerobic digester	Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.		
Aerobic treatment	The biological oxidation of manure collected as a liquid with either forced or natural aeration.		
Composting	The biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.		

Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use

D: Governing Equations (IPCC, 2006)

Terms	Description	Units	Data Sources/Remarks					
	ENTERIC FERMENTATION EMISSIONS		TOCK CATEGORY					
Emissions $E = EF_T \times \left(\frac{N_T}{10^6}\right)$								
E	Methane emissions from Enteric	Gg CH4 yr ⁻¹	Calculated value/result					
EFT	Emission factor for the defined livestock population	kg CH ₄ head ⁻¹ yr ⁻¹	Table 10.11, IPCC 2006 GL					
N _T	The number of head of livestock species / category T in the country	,	FAREI					
Т	Species/category of livestock		FAREI					
	TOTAL EMISSIONS FROM LIVESTO	CK ENTERIC FE	RMENTATION					
$TOTAL CH_4 Enteric = \sum_{i} E_i$								
Total CH ₄ Enteric	Total methane emissions from Enteric Fermentation	Gg CH ₄ yr ⁻¹	Calculated value/result					
Ei	The emissions for the i th livestock	Summation	Added emissions for all					
	categories and subcategories		livestock considered					
CH₄ EMISSIONS FROM MANURE MANAGEMENT								
	CH _{4 Manure} $\sum_{T} \frac{(}{}$	$Er_T \times N_T$						
	T Manufe Z	10°						
CH4 _{Manure}	CH ₄ emissions from manure management, for a defined population	Gg CH₄ yr ⁻¹	Calculated value/result					
EF _T	emission factor for the defined	kg CH ₄ head ⁻¹	Table 10.14 to 10.16 - IPCC					
	livestock population	yr ⁻¹	2006 GL					
Nτ	the number of head of livestock		FAREI					
	species/category T in the country		5405					
Т	species/category of livestock		FAREI					
	DIRECT N20 EMISSIONS FROM	I MANUKE MANA 1	AGEMEN I					
	$N_2 O_{D(mm)} = \left[\sum_{S} \left[\sum_{T} (N_T \times Nex_C) \right] \right]$	$_{T)} \times MS_{(T,S)} \bigg] \times$	$EF_{3(S)} \bigg] \times \frac{44}{28}$					
N ₂ O _{D(mm)}	direct N2O emissions from Manure Management in the country,		Calculated value/result					
N _T	number of head of livestock species/category T in the country		FAREI					
Nex _(T)	annual average N excretion per head of species/category T in the country,	kg N animal-1 yr-1	IPCC 2006 GL Table 10.19 and expert judgment by FAREI					
MS _(T,S)	fraction of total annual nitrogen excretion for each livestock species/category T that is managed in manure management system S in the country	annual nitrogen dimensionless FAREI ch livestock y T that is managed in						
EF _{3(S)}	emission factor for direct N ₂ O emissions from manure management system S in the country,	kg N ₂ O-N/kg N in manure management system S	IPCC 2006 HL Table 10.21					
S	manure management system		IPCC 2006 GL Table 10.19 and					
TT.			expert judgment by FAREI					
T	species/category of livestock		FAREI					
44/28	Conversion of (N2O-N)(mm) emissions to N2O(mm) emissions		IPCC 2006 GL					