

XLM-LIQUID WASTE TOOLKIT

User Manual

AUGUST 1, 2017

Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division) Republic of Mauritius

XL-Mitigation Liquid WasteToolkit

About this manual

This manual, *XL-Mitigation Liquid Waste User Reference*, forms part of a family of toolkits to compute and plot a number of other variables including GHG emissions for Liquid Waste sector. The user reference has been written from an application developer's perspective. A fundamental conceptual and operational knowledge of Excel is assumed.

Disclaimer

Data used has been obtained from reliable sources. The Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division) assumes no responsibility for errors and omissions in the data provided. Users are, however, kindly asked to report any errors or deficiencies in this product to the Ministry. The choices of calculation made in this tool are derived from TNC Report (2016).

Copyright

©2017 Government of Mauritius and United Nations Environment Programme

All rights reserved. No part of this Guideline and/or Toolkit may be produced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission from the Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division) and the United Nations Environment Programme. Results based on the use of the Toolkit must be duly acknowledged and referenced; the copyright holder's endorsement of Users' views, products or services shall not be implied in any way.

Ministry of Social Security, National Solidarity, and Environment and Sustainable Development (Environment and Sustainable Development Division)	UNEP	gef
Ken Lee Tower, Corner St Georges and Barrack Streets	United Nations Environment Programme	Global Environment
Port Louis, Mauritius	Division of Technology, Industry	Facility
Phone: +(230) 203 6200	and Economics, DTIE	1818 H Street, NW
Fax: +(230) 212 9407	P.O. Box 30552	Washington, USA
Email: menv@govmu.org	Nairobi, Kenya	Tel :+(202) 473 3202
Website:	Tel :+(254-20) 762 5264	Fax :+(202) 522 3240 Email: gefceo@thegef.org
http://environment.govmu.org	Fax :+(33-1) 4437-1474	
	Website: <u>http://www.unep.org/</u>	Website: <u>www.thegef.org</u>

XLM-Liquid Waste Toolkit

Table of Contents

Intr	roduction	3			
Ove	erview of the Liquid Waste sector	3			
GH	IG Emissions from the Liquid Waste sector	5			
Liq	uid Waste Mitigation Actions proposed under 2016 TNC	6			
.1.	Mitigation Scenarios and Assumptions	6			
.2.	TNC Targets under different scenarios	7			
XL	M–Liquid Waste Toolkit	8			
5.1.	Liquid Waste Data	8			
5.2.	Liquid Waste Parameters	8			
5.3. Liquid Waste Assumptions					
5.4.	Graphic Analysis and Reporting	9			
Ref	ferences1	0			
Ap	pendices1	1			
	Ov GH Lic .1. .2. XL 5.1. 5.2. 5.3. 5.4. Ref	 2. TNC Targets under different scenarios			

XLM-Liquid Waste Toolkit

1. Introduction

This document refers to a user-friendly toolkit developed to mitigate the GHG emissions from the Liquid Waste sector of the Republic of Mauritius.

The mitigation for Liquid Waste sector was assessed in the Third National Communications (TNC) Report (2016) for a Business-as-Usual (BAU) and one other scenario, after a screening exercise to select the most feasible options. Thus, the other scenario, after the BAU, considered that there will be additional sewerage.

The XLM-Liquid Waste Toolkit performs basic calculations taking the population with different sanitation facilities. The trend in the different sanitation facilities until 2050 was worked out following assumptions taken from the TNC. Users of the XLM-Liquid Waste Toolkit can adjust the scenarios by choosing appropriate parameters/assumptions to suit their needs for the mitigation analysis.

2. Overview of the Liquid Waste sector

The amount of liquid wastes generated in Mauritius is increasing and in 2015 the treated wastewater reached 49.37 million m3 (Statistics Mauritius 2016) with an annual growth of ~5.6%. In 2014, the Government investment was around MUR 15 billion in the wastewater sector for the construction of wastewater treatment plants, pumping stations, trunk and street sewers and reticulation networks. For the coming years, investment in respect of wastewater infrastructure is expected to be around MUR 5.4 billion (WMA 2017).

Regions	Household connectivity
Plaines Wilhems Lot 1A Project (covering regions of Stanley,	Expected to cover around
Palma, Hugnin, Bassin, Trèfles, Seeneevassen and Victoria)	6800 households to be
	connected to the public sewer.
Plaines Wilhems Sewerage Project Lot 1B (covering regions of	Around 13,500 households
West Rose Hill, Mont Roches, Roches Brunes, Plaisance);	have been connected to the
Plaines Wilhems Sewerage Project Lot 2 (covering regions of	public sewer.
Central Quatre Bornes, Sodnac and Belle Rose).	
Pailles Guibies Phase I with a pumping station and about 4 km	Objective of connecting 3,000
of trunk sewers.	households.
The Grand Baie Sewerage Project Phase 1B, comprises of the	About 4,000 House
construction of 80 km of street sewer, 12 km rising mains, 22	Connections
nos. pumping stations, refurbishment of the existing facilities at	
the Grand Baie wastewater treatment plant, and replacement of	
6 km of CWA pipes	
CHA (6 sites) and low cost housing Estates	Plans to rehabilitate/provide
	wastewater disposal facilities
	for the period 2015 to 2020

Key facts about the wastewater system: (source: WMA)

Average daily volume of wastewater collected and treated including industrial wastewater	117,426.89 m ³
Number of Wastewater Treatment Plants	10
No of Wastewater Pumping Stations	72
Length of sewer main jetted as a part of preventive maintenance	99.5 km
No of sewer blockages cleared	11,200
No of Wastewater Carrier Operators	70
No of trips of wastewater disposal by WMA carriers	4,495
Number of trips of Wastewater disposal by private carriers	33,373
Total volume of seepage carted away by WMA & Private Cesspool Carriers	743,783 m ³

Key Facts about wastewater disposals: (source: SM, 2011 Census)

Sanitation facility	% population having access
Sewerage (Plaines Wilhems, Port Louis and Pte aux Sables, CHA estates and Grand Baie)	28
Absorption or Cess pit	63
Septic tank	6
Pit latrine	3

3. GHG Emissions from the Liquid Waste sector

The Liquid Waste sector is an important sector having GHG emissions in terms of CH_4 and N_2O . The amount of liquid wastes generated in Mauritius is increasing. In 2015 the treated wastewater reached 49.37 million m³ (Statistics Mauritius 2016).

Figure 3.1 shows the trend of emissions for the overall waste sector. Emissions from liquid wastes are lower than those for solid wastes.

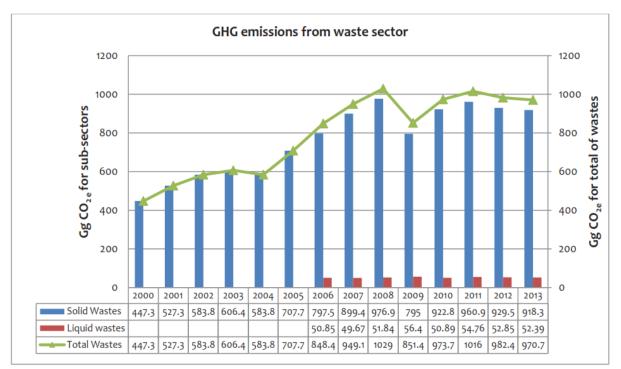


Figure 3.1: Trend of emissions for Waste Sector (Source: TNC, 2016)

4. Liquid Waste Mitigation Actions proposed under 2016 TNC

4.1. Mitigation Scenarios and Assumptions

Relative to the BAU scenario, the other scenario was developed in TNC (2016). Scenario 1 (SC1) involves enhancing of the sewer network.

The assumptions adopted by TNC for mitigation actions for the Liquid Waste sector are summarized in Table 4.1. These assumptions in this table are taken into the calculations. This means that worksheets for assumptions already contain the percentages for the different options (that can be updated by the User).

	Scenario	Assumptions
BAU	Business-As-Usual	BAU scenario assumes that connection to the sewer system up to 2017 proceeds at the same rate as in 2013,
		thereafter decreasing by a factor of 4.
SC1	Enhancing the capture of LFG for either flaring or electricity generation	Implementation of the Wastewater Master Plan II to increase household connectivity to the sewer system up to 80% by 2033. An additional 5% of households are assumed to be connected to the sewer system between 2035 and 2050. In this scenario, the utilization of centralized aerobic wastewater treatment system increases from 0.25 in 2015 to 0.75 in 2030, and to 0.85 in 2050 with corresponding decreases in the use of septic systems. The protein intake has been kept constant at 27.32 kg/cap/yr (which is the highest value reached in 2013).

Table 4.1: Mitigation actions proposed by TNC (2016) and assumptions used

The parameters used for the different scenarios appear in section 5.2.

4.2. TNC Targets under different scenarios

For this sector, the change in GHG emissions relative to BAU scenario is summarized in both Table 4.1 and Figure 4.1.

Scenario		TNC TARGETS Expected GHG emissions	TNC Remarks		
BAU	Business-As- Usual	~166 Gg CO2e in 2020; ~172 Gg CO2e in 2050;	GHG emissions comprising both emissions of CH_4 and indirect N_2O (from protein intake) increase gradually over time.		
SC1	Enhanced sewer connectivity	Relative to BAU, GHG Emissions reductions of: 53.95 GgCO2e in 2020; 108.53 GgCO2e in 2030; 121.78 GgCO2e in 2040; 130.56 GgCO2e in 2050;	The SC1 reduces the GHG emissions, though the utilization of centralized aerobic wastewater treatment system increases as well as the protein intake to some extent.		

Table 4: TNC (2016) GHG Emissions for the Liquid Waste sector (Gg CO2e)

The overall projected emissions from BAU and SC1 are shown in Figure 4.1. It can be seen that enhanced sewer connectivity reduces considerably the GHG emissions.

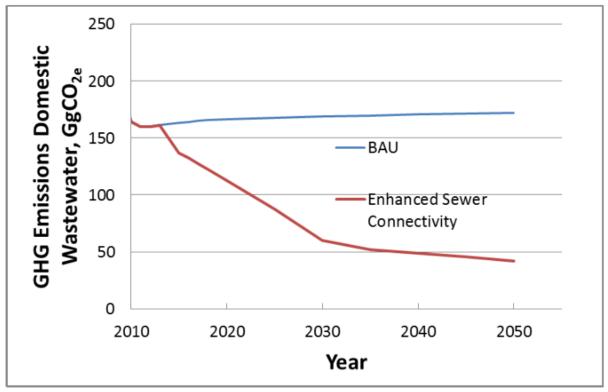


Figure 41: GHG Emissions scenarios in Liquid Waste sector (2010-2050) (source: TNC, 2016)

5. XLM-Liquid Waste Toolkit

The structure, methodology, components/modules and other details of XLM Toolkits has been described in the main User Manual.

5.1. Liquid Waste Data

The '*Data*' worksheet essentially contains the population, and sewerage or other sanitation facilities for each year. The actual data pertains to year 2006 to 2013 and beyond that, the projections have been made for the 2016 TNC study, but does not appear in the data sheet. These data are used in combination with the parameters in the '*Parameters*' worksheet (Global warming potentials, methane correction fractions, CH_4 emission factors, etc.) and the assumptions in the '*Assumptions*' worksheet, to make the calculations of the GHG emissions. The projected data are also used in the calculations for future emissions. The data sources for this sector are typically from the Waste Water Management Authority (WMA) and Statistics Mauritius for sanitation facilities available.

5.2. Liquid Waste Parameters

Table 5.1 presents the major parameters used for the liquid waste sector used in the XLM-Liquid Waste Toolkit; all parameters used appear in the '*Parameters*' worksheet.

PARAM	ARAMETERS FOR SCENARIO 1														
		A. PARAMETERS USED TO CALCULATE ORGANICALLY DEGRADABLE MATERIAL IN WASTEWATER (TOW)													
		Sewere	ed Plaines	Absorpti	on pit	Septic t	ank	Pit latrine Sewered P		PL and Pte	5 CHA	estates	states Grand Baie		
		TNC	User Defined	TNC	User Defined	TNC	User Defined	TNC	User Define d	TNC	User Defined	TNC	User Defined	TNC	User Defined
	sewer	1.25	1.25	1	1	1	1	1	1	1.25	1.25	1.25	1.25	1	1
2006		8.2	8.2	13.505	13.505	13.505	13.505	13.505	13.51	14	14	13.7	13.7	8.1	8.1
2007		9.5	9.5	13.505	13.505	13.505	13.505	13.505	13.51	15.3	15.3	6.9	6.9	11.5	11.5
2008		13.3	13.3	13.505	13.505	13.505	13.505	13.505	13.51	22.55	22.55	4.85	4.85	12.7	12.7
2009		15.3	15.3	13.505	13.505	13.505	13.505	13.505	13.51	36.2	36.2	21.505	21.505	19.5	19.5
2010		15.7	15.7	13.505	13.505	13.505	13.505	13.505	13.51	16.5	16.5	16.5	16.5	17	17
2011		15.5	15.5	13.505	13.505	13.505	13.505	13.505	13.51	15.1	15.1	16.2	16.2	15.1	15.1
2012		15.9	15.9	13.505	13.505	13.505	13.505	13.505	13.51	13.9	13.9	21.505	21.505	13	13
2013		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2015	BOD,	14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2016	kgBOD/Cap/yr	14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2017		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2018		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2020		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2025		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2030		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2035		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2040		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2045		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1
2050		14.9	14.9	13.505	13.505	13.505	13.505	13.505	13.51	14.7	14.7	19.7	19.7	14.1	14.1

Table 5.1: List of Paramete	s for the Liquid	Waste sector
-----------------------------	------------------	--------------

B. PARAMETERS USED TO CALCULATE EMISSION FACTORS							
	Maximu	Maximum methane Methan correction factor Emission Factor, EF,					
						User	
	TNC	User Defined	TNC	User Defined	TNC	Defined	
Anaerobic digester for sludge	0.6	0.6	0.8	0.8	0.48	0.48	
Septic system	0.6	0.6	0.5	0.5	0.3	0.3	
Latrine	0.6	0.6	0.1	0.1	0.06	0.06	
Centralised aerobic system	0.6	0.6	0	0	0	0	

Fnpr, kgN/kgprot	Fnon-con protein	Frac, industrial + commercial	Nremoved sludge, kg	EF, kgN2O- N/kgN	Emission Wwplant, KgN2O/yr	N2 to N2O conversion
0.16	1.4	1.25	0	0.005	0	1.571429

Protein intake per capita, kg/cap/yr					
average	26.481				
median	26.685				
highest	27.32				
used	27.32				

It is to be noted that most parameters are from the IPCC Guidelines (2006) for GHG inventories, but local factors can be used whenever available.

5.3. Liquid Waste Assumptions

The assumptions (in the 'Assumptions' worksheet) used in the XLM-Liquid Waste Toolkit are essentially the changes over the years which fluctuates depending on national circumstances such as households and industrial activities, etc.; these assumptions are derived from TNC (2016). The main assumption considers the percentage population connected to the different sanitation systems which have been altered to make projections, based on the TNC. Thus, for instance, sewer connectivity can be seen to increase each year by a certain percentage, while pit latrines may decrease.

5.4. Graphic Analysis and Reporting

Graphic analysis in the 'Query' worksheet provides the following choices for the type of plots:

Sector	Type of Plot	Plot numbers
	ALL	1-25;
Liquid Waste	Population and Connectivity	1-8; 14-20;
	GHG Emissions	9-13; 21-25;
	Total GHG Emissions (TNC)	13, 25;

The complete set of figures that the XLM-Liquid Waste Toolkit provides is listed in Table 5.3. In this table, the rightmost column denotes the general topic or item for which the plots can be generated for graphical analysis.

		Plot Numbers	
		BAU	SC1
	Population	1	
	Sewered Plaines Wilhems Population	2	14
	Population with Absorption pit	3	15
Connectivity	Population with Septic tanks	4	16
Connectivity	Population with pit latrines	5	17
	Sewered PL and Pte aux Sables	6	18
	5 CHA Estates	7	19
	Grand Baie sewerage connections	8	20
	CH4 Emissions Gg	9	21
CUC	CH4 Emissions Gg CO2 e	10	22
GHG Emissions	N2O Emissions Gg	11	23
	N2O Emissions Gg CO2 e	12	24
	Total GHG CO2 e	13	25

Table 5.3: List of graphics for the Liquid Waste sector

6. References

- Statistics Mauritius (2016): Statistics Mauritius, Digest of Environment Statistics 2015, Vol. 14, Ministry of Finance and Economic Development, November 2016
- Statistics Mauritius, Digest of Energy and Water, 2015
- **TNC (2016).** Third National Communication: Report to the United Nations Framework Convention on Climate Change. Republic of Mauritius, Port Louis
- **IPCC (2006).** Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

7. Appendices

A: List of Acronyms and Abbreviations

Toolkit		Others		
BAU	Business as Usual	IPCC	International Panel of Climate Change	
GUI	Graphics User Interface	GHG	Greenhouse Gas	
UD1	User-defined Scenario - Case 1	TNC	Third National Communications	
UD2	User-defined Scenario - Case 2	WMA	Wastewater Management Authority	
SCi	Scenario i	GWP	Global Warming Potential	
XLMT	Excel Mitigation Toolkit			

B: Useful Links

<u>IPCC</u>

<u>TNC</u>

<u>WMA</u>

CENSUS (page 172 for sanitation) and general census

Digest environment and others

C: Governing Equations

	Description	Units	Data Sources	Remarks
(1) TOTAL ORGANICALLY	DEGRADABLE N	IATERIAL IN DOMEST	C WASTEWATER (TOW)
		TOW - P y	BOD x 0.001 x I x 365	
Р	Country population in	Number	Statistics Mauritius -	Some interpolations may be
I	inventory year	(person)	Census	needed.
BOD	Country-specific per capita BOD in inventory year	g/person/day	WMA	Needs to be converted to Kg for one year.
0.001	Conversion from grams BOD to kg BOD		IPCC 2006 GL	
Ι	Correction factor for additional industrial BOD discharged into sewers		IPCC 2006 GL	For collected wastewater, the default is 1.25, for uncollected the default is 1.00.
365	No. of days in a year			Number of days in a year
	(2) CH4 EMISSION FACTC	PATHW	DMESTIC WASTEWATE AY OR SYSTEM (EF _j) ⁷ j = B₀ x MCFj	R TREATMENT/DISCHARGE
Bo	Maximum CH4 producing	kg CH4/kg BOD	IPCC 2006	j = Type of treatment/discharge
-	capacity	8 - 8 -	Table 6.2	pathway or system
MCFj	Methane correction factor	dimensionless	IPCC 2006	These are available for each
,	(fraction)		Table 6.2	type of wastewater treatment
Σ	Summation	لک _{ا.j} ۲	$\left \text{T}_{i,j} \times \text{EF}_j \right (\text{TOW} - \text{S}) -$	The calculations are done for
_				
				each treatment type and regions/systems and in the end
i	Income group		Expert judgement	each treatment type and
	Income group Treatment/discharge pathway or system		Expert judgement Expert judgement	each treatment type and regions/systems and in the end summed or added up income group: rural, urban high
j	Treatment/discharge	kg BOD/yr		each treatment type and regions/systems and in the end summed or added up income group: rural, urban high
j S	Treatment/discharge pathway or system Organic component removed as sludge in	kg BOD/yr fraction	Expert judgement	each treatment type and regions/systems and in the end summed or added up income group: rural, urban high income, and urban low income
i j S Ui T _{i,j}	Treatment/discharge pathway or system Organic component removed as sludge in inventory year Fraction of population in income group i in		Expert judgement WMA	each treatment type and regions/systems and in the end summed or added up income group: rural, urban high income, and urban low income

Calculation of CH4 remissions

Terms	Description	Units	Data Sources	Remarks
	(1) N ₂ O EMISSIONS	FROM WASTEWA	ATER EFFLUENT	
	N_2O Emissions = N_E		$_{\rm T} \times (44/28)$	
N ₂ O	N2O emissions in inventory year	kg N ₂ O/yr		Calculated
emissions N EFFLUENT	Nitrogen in the effluent discharged to	kg N/yr	IPCC 2006	
IN EFFLUENT	aquatic environments	Kg IN/ yI	Table 6.11	
EFEFFLUENT	Emission factor for N ₂ O emissions	kg N ₂ O-N/kg N	IPCC 2006	
LI EFFLUENI	from discharged to wastewater	Kg 1120-11/ Kg 11	Table 6.11	
44/28	Conversion factor for kg N ₂ O-N into			
	kg N ₂ O			
	-			
	(2) TOTAL N	ITROGEN IN THE F	EFFLUENT	
	$N_{EFFLUENT} = (P \times Protein \times I)$	ENDR X FNON-CON X F I	ND-COM) - NSLUDGE	
Р	Human population	Number	Statistics Mauritius	
NEFFLUENT	Total annual amount of nitrogen in	kg N/yr		Calculated
	the wastewater effluent	89-		
Protein	Annual per capita protein	kg/person/yr	FAO database	Protein intake per
	consumption			capita, kg/cap/yr
	-			average 26.4812
				median 26.685 highest 27.32
				used 27.32
FNPR	Fraction of nitrogen in protein	kg N/kg protein	IPCC 2006	
	(default = 0.16)		Table 6.11	
F _{NON-CON}	Factor for non-consumed protein	dimensionless	IPCC 2006	
	added to the wastewater		Table 6.11	
$F_{IND-COM} =$	Factor for industrial and commercial	dimensionless	IPCC 2006	
	co-discharged protein into the sewer		Table 6.11	
	system			
NSLUDGE	Nitrogen removed with sludge	kg N/yr	IPCC 2006	
	(default = zero)		Table 6.11	
	(3) N ₂ O EMISION FROM CENTRA	LIZED WASTEWA	TER TREATMENT PRO	DCESSES
	N2 $\Omega_{\text{DI ANTE}} - \mathbf{P} \mathbf{v}$	TPLANT X FIND-COM X	EFDI ANT	
N ₂ Oplants	Total N ₂ O emissions from plants in	kg N ₂ O/yr		
201201010	inventory year			
Р	Human population	number	Statistics Mauritius	
	F - F			
TPLANT	Degree of utilization of modern,	%	IPCC 2006	
	centralized WWT plants		Table 6.11	
FIND-COM	Fraction of industrial and commercial		IPCC 2006	(default = 1.25)
	co-discharged protein		Table 6.11	based on data in
				Metcalf & Eddy (2003) and expert judgment)
	4			and expert judgment)
EFPLANT	Emission factor	3.2 g	IPCC 2006	

Calculation of N₂O remissions