MCA application in the Mauritian Context – TNA, NAMA and other projects

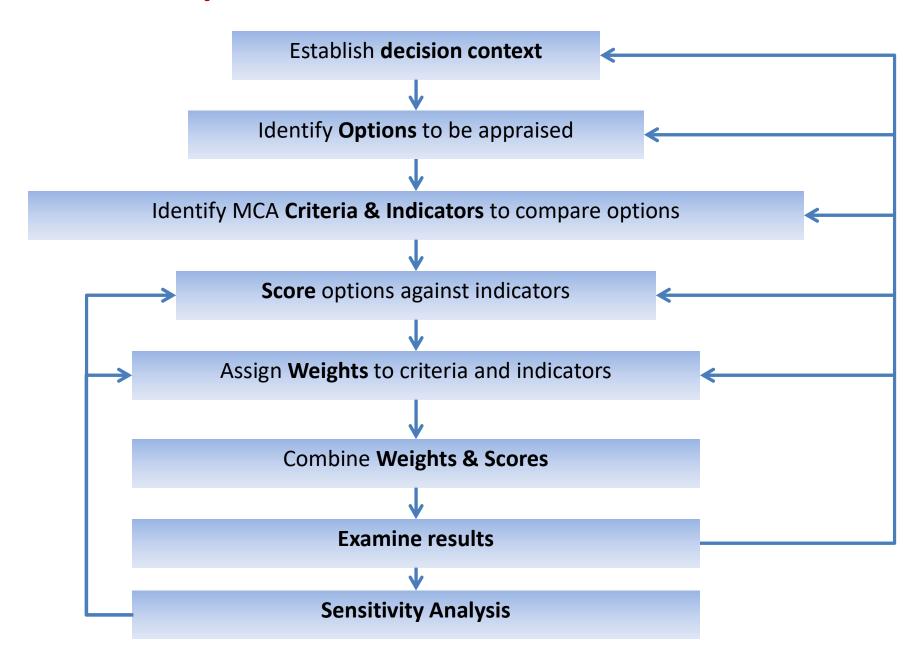
Prakash (Sanju) Deenapanray NAMA Project Consultant

[sanju@ecolivinginaction.com]

7 July 2021

Overview

1. MCA Steps – a recap


2. The MCA4Climate Framework

- 3. Examples of application
 - TNA
 - TNC
 - NAMA
 - Renewable energy strategy
 - Corporate Sustainability (materiality)

Identification and Prioritization of mitigation options

(Multi-Criteria Analysis)

The MCA process

Step 1: Establish the decision context

 Developing low-carbon emissions pathways / scenarios for land transport in Mauritius

Step 2: Identify options to be appraised

 Based on a combination of literature review and expert judgement (members of the TWG)

MCA4Climate Framework (Criteria and Indicators)

Step 3: Identify criteria and indicators

Criteria	Indicators
Public financing needs	- Direct costs
	- Indirect costs
Implementation barriers	- Ease of implementation
	 Compliance with required timing of policy intervention
Climate-related	- GHG reduction (& black carbon emissions)
	- Enhance resilience to climate change
Economic	- Catalyzing private investments
	- Improvement of economic performance
	- Job creation
	- Contribute to fiscal sustainability
Environmental	- Protect environmental resources (quality & stock)
	- Protect biodiversity
	- Support ecosystem services
Social	- Poverty reduction
	- Reduce inequity
	- Improve health
	- Preserve cultural heritage
Political & institutional	- Contribute to political stability
	- Improve governance

Step 4: Scoring

Assess the expected impact of each mitigation action against the criteria/indicators selected in the previous step

- Objective indicators done by ELIA
- Subjective indicators done by TWG members

Step 5: Weighting

Assign weights for each of the criterion to reflect their relative importance to the decision

Depends on expert knowledge

Step 6: Combining weights and scores

Combine weights and scores for each mitigation action to derive an overall value

- There is no normative model on how to carry MCA without critics
- Linear additive model (most widely used)

$$S_i = w_1 s_{i1} + w_2 s_{i2} + ... + w_n s_{in} = \sum_{j=1}^{n} w_j s_{ij}$$

Step 7: Examine results

This is the step through which feedback is introduced in the process flow. It can happen at multiple levels including adding new options and defining new criteria

Step 8: Sensitivity analysis

Do the preferences or weights affect the overall ordering of the mitigation actions?

- This is a very relevant step when stakeholders do not give same considerations to weights and/or when preferences differ widely
- Look at the advantages and disadvantages of mitigation actions
- Can be done conjunctly with step 7 until a final consensual outcome is obtained

Examples of Applications

TNA Mauritius – Mitigation (1/2)

Criteria	Indicators	Measurement scale	Weight	Sensitivity	y analysis
Public Financing needs	Direct incremental cost, e.g. direct government budgeting	Rs/tCO2	0.15	0.2	0.15
Implementation Barriers	Ease of Implementation e.g. non-financial barriers	Likert scale: 0 (highest barrier) – 100 (lowest barrier)	0.15	0.1	0.1
Climate-related	GHG reduction	tCO2 (to 2025)	0.2	0.25	0.2
Economic	- Catalysing private investments	Likert scale: 0 (lowest) – 100 (highest)	0.15	0.05	0.05
	- Reduction in energy import bill	MRs (million Rs) (to 2025)	0.1	0.1	0.1
	- Replicability	Likert scale: 0 (lowest) – 100 (highest)	0.05	0.05	0.05
Social - Impact on health		Likert scale: 0 (lowest) – 100 (highest)	0.05	0.05	0.05
	- Job creation	Quantity (to 2025)	0.10	0.15	0.15
Political and	Contribute to political	Likert scale: 0 (lowest)	0.05	0.05	0.15
Institutional	stability	– 100 (highest)			

TNA Mauritius – Mitigation (2/2)

			CRITERIA AND INDICATORS									
	Public Financing	Implementation Barriers	Climate		Econom	iic	So	ocial	Political &			
TEGUNOLOGY			GHG reduction		 - Energy	 	Impact on	-	political	TOTAL	DANK	
TECHNOLOGY	Direct cost	5.0	(tCO2/kW) 8.1	investment 3.8	+ 4.1	replicability	health	creation	stability 10.5	TOTAL	RANK	
Solar PV (>1MW)	10.3				. 	3.0	1.3	: 15.0		61.00	2	
Wind (utility scale)	13.8	2.5	20.0	2.5	10.0	1.3	1.3	3.6	10.5	65.44	1	
Small-scale hydro (>50kW)	13.8	4.0	0.6	1.5	0.3	l . 3.5	1.3	! _{0.0}	9.0	34.01	5	
EE HVAC (industrial)	0.0	6.0	0.3	3.5	0.2	4.0	2.5	0.5	7.5	24.49	7	
		1.0	0.0	1.5	0.1	i		i	7.5			
EE Bldg Des (exterior insulation)	14.4				:	4.0	3.5	0.1		32.06	6	
HE Compressors (industrial)	15.0	2.5	0.0	3.5	0.0	3.5	3.0	0.0	7.5	35.03	4	
EE Boilers/Heat recovery	13.1	3.0	1.4	4.0	0.0	4.0	3.3	2.8	7.5	39.10	3	
WEIGHTS	0.15	0.1	0.2	0.05	0.1	0.05	0.05	0.15	0.15	1		

Mauritius – Third National Communication (TNC)

Land Transport

		CRITERIA AND INDICATORS								
	Public Financing	Implementatio n Barriers	Climate		Economic Social					
		Ease of implementat ion		catalysing private investme	l ∶ I Energy	 - 	Impact	 - Job		
TECHNOLOGY	Direct cost		reduction	nt	bill	replicability	on health	creation	TOTAL	RANK
Improved fuel efficiency	15.0	15.0	5.1	0.8	1 2.0	1.3	2.5	5.2	46.74	2
Improved vehicle inspection	15.0	12.0	25.0	3.8	10.0	0.8	3.0	10.0	79.46	1
Ethanol blend	14.6	3.8	5.7	4.5	2.5	0.5	2.0	5.4	39.07	4
Hybrid cars	7.1	12.0	2.9	9.8	1.3	3.8	2.5	5.2	44.51	3
Eletric cars	7.7	7.5	0.0	7.5	0.0	4.5	1.5	5.2	33.90	5
Express Rail	0.0	1.5	8.2	12.0	3.2	0.3	4.3	i 0.0	29.43	6
				-						
WEIGHTS	0.15	0.15	0.25	0.15	0.1	0.05	0.05	0.1	1	

Solid Waste

	1								I	
			CRITERIA AND INDICATORS							
	Public Financing	Implementatio n Barriers								
		Ease of	GHG	catalysing	ļ	!		<u> </u>		
		implementat	reduction	private	j	i		İ		
		ion	(tCO2/kW	investme	Energy	:	Impact	Job		
TECHNOLOGY	Direct cost)	nt	bill	replicability	on health	creation	TOTAL	RANK
LFG capture	15.0	12.8	12.6	1.5	1.9	0.5	0.8	0.0	45.06	3
Recycling of paper and textile	12.5	9.8	0.0	6.0	0.0	j 1.0	2.0	i 4.0	35.21	4
WTE	0.0	3.8	25.0	10.5	10.0	0.3	0.5	10.0	60.00	1
Composting	13.8	7.5	12.4	8.3	0.0	1.0	1.0	3.3	47.27	2
						_				
WEIGHTS	0.15	0.15	0.25	0.15	0.1	0.05	0.05	0.1	1	

NAMA Project (e.g. Land Transport)

1. Starting framework is the MCA4Climate used in the TNC

		CRITERIA AND INDICATORS								
	Public Financing	Implementatio n Barriers	Climate		Economic Social					
		Ease of implementation		catalysing private investme	l ∶ l Energy	 - 	Impact	 - Job		
TECHNOLOGY	Direct cost		reduction		bill		on health	1	TOTAL	RANK
Improved fuel efficiency	15.0	15.0	5.1	0.8	2.0	1.3	2.5	5.2	46.74	2
Improved vehicle inspection	15.0	12.0	25.0	3.8	10.0	0.8	3.0	10.0	79.46	1
Ethanol blend	14.6	3.8	5.7	4.5	2.5	0.5	2.0	5.4	39.07	4
Hybrid cars	7.1	12.0	2.9	9.8	1.3	3.8	2.5	5.2	44.51	3
Eletric cars	7.7	7.5	0.0	7.5	0.0	4.5	1.5	5.2	33.90	5
Express Rail	0.0	1.5	8.2	12.0	3.2	l 0.3	4.3	i 0.0	29.43	6
					_					
WEIGHTS	0.15	0.15	0.25	0.15	0.1	0.05	0.05	0.1	1	

- 2. Review of criteria and indicators by Sectoral Working Group
- 3. Changes proposed (indicators): Incremental cost (objective); Impact of health (use noise pollution subjective); avoided travel time (objective indicator under Social criterion)

Renewable Energy Roadmap

Table1-3: MCA Scoring System for 2030 for RE 35% and RE 40%

Factor	Score	Weightage for 2030	Details of scoring system (as applicable)
Maturity of Technology	100	25	High: 100Medium: 50Low: 0
LCOE	100	35	 7.1 ¢\$/kWh: 100 25.4 ¢\$/kWh: 0 (prorated for LCOE costs in-between)
Environmental Impact	100	10	 Noise: -20 Air: -20 Water: -20 Eyesore: -10 Greenhouse Gas Emission: -20 Impact on biodiversity: -10
Intermittency of Power Output	100	5	No: 100Medium: 50Highly: 0
Land Use Impact	100	25	Small: 100Medium: 50Extreme: 0

Republic of Mauritius. (2019). Renewable energy Roadmap 2030 for the electricity sector. Ministry of Energy and Public Utilities.

Corporate Sustainability – materiality analyses

GRI Standards

ents	90.0			>				
E	Sustąjąpility Topics - GRI	Economi	ic Social	Environmental	Option 1	Option 2	Option 3	Option 4
essm	Materials	90	85	80	255.0	85.0	86.5	87.8
Asse	Energy.0	90	70	90	250.0	83.3	84.0	87.0
Ą	Water	90	15	15	120.0	40.0	52.5	67.5
de	© odiygr⊛ity	15	15	15	45.0	15.0	15.0	15.0
0	Emissions	85	40	85	210.0	70.0	71.5	78.3
ê	fluents and Waste	90	80	90	260.0	86.7	87.0	88.5
Stakeh	Environmental compliance	90	70	90	250.0	83.3	84.0	87.0
	📆 ppbien Environmental Assessment	15	45	45	105.0	35.0	30.0	24.0
on	10.0							
nce	Sustainability Topics - SDGs	Economi	ic Social	Environmental	Option 1	Option 2	Option 3	Option 4
uer	SDG 6 Clean water & sanitation	10	10	10	30.0	10.0	10.0	10.0
Infl	SDG 7 - Affordable & clean energy			90	250.0	83.3	84.0	87.0
=	SDG 14 - Life bel Significant Econon	nic. Soc	ial and	15	45.0	15.0	15.0	15.0

45.0

15

15.0

15.0

15.0

Environmental Impacts

NO WEIGHTS	Option 1

SDG 14 - Life bel Significant Economic, Social and

WEIGHTS				
Option	2 0.333333	0.3333	0.333333333	1
Option	3 0.5	0.3	0.2	1
Option -	4 0.7	0.15	0.15	1

ELIA – Ecological Living In Action Ltd

Prakash (Sanju) Deenapanray [sanju@ecolivinginaction.com]

www.EcoLivingInAction.com (5924 3395)

Ecological Living In Action