Climate Change and Health:
Vector-borne Diseases

Mark L. Wilson, Sc.D.
Professor of Epidemiology and of Ecology and Evolutionary Biology
The University of Michigan
Ann Arbor, Michigan, USA

Training on Climate Change Related Health Impacts
Republic of Mauritius
14-18 May, 2012
Vector-borne Disease Mortality Global Distribution

- Majority of Vector-borne Disease (VBD) burden borne by developing countries
- Disproportionate amount in Africa

WHO, 2005
Vector-borne Disease

- What is VBD?
- Types of VBD transmission:

  Human-vector-human
  *(Anthroponotic Infections)*

  Animal-vector-human
  *(Zoonotic Infections)*

WHO 2009
## Some Emerging Vector-Borne Diseases

<table>
<thead>
<tr>
<th>Infection</th>
<th>Distribution</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barmah Forest virus</td>
<td>Australia</td>
<td>Mosquitoes</td>
</tr>
<tr>
<td>Cat flea typhus</td>
<td>United States</td>
<td>Fleas</td>
</tr>
<tr>
<td>Cat-scratch disease</td>
<td>Global</td>
<td>Fleas, <em>Ctenocephalides felis</em></td>
</tr>
<tr>
<td>Dengue hemorrhagic fever</td>
<td>Americas, Asia</td>
<td><em>Aedes (Stegomyia)</em> mosquitoes</td>
</tr>
<tr>
<td>Human ehrlichiosis—monocytic</td>
<td>Americas, Asia, Europe</td>
<td>Ticks</td>
</tr>
<tr>
<td>Human ehrlichiosis—granulocytic</td>
<td>United States, Europe</td>
<td>Ticks</td>
</tr>
<tr>
<td>Kyasanur forest disease</td>
<td>India</td>
<td>Ticks</td>
</tr>
<tr>
<td>O’nyong-nyong fever</td>
<td>East Africa</td>
<td><em>Anopheles</em> mosquitoes</td>
</tr>
<tr>
<td>Oriental spotted fever</td>
<td>Japan</td>
<td>Ticks?</td>
</tr>
<tr>
<td>Oropouche virus</td>
<td>South America, Panama</td>
<td><em>Culicoides</em> midges</td>
</tr>
<tr>
<td>Potasi virus</td>
<td>United States</td>
<td>Mosquitoes</td>
</tr>
<tr>
<td>Rocio virus</td>
<td>Brazil</td>
<td>Mosquitoes</td>
</tr>
</tbody>
</table>

Gratz 1999
<table>
<thead>
<tr>
<th>Infection</th>
<th>Distribution</th>
<th>Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chikungunya</td>
<td>Africa, Asia</td>
<td><em>Aedes (Stegomyia)</em> mosquitoes</td>
</tr>
<tr>
<td>Congo-Crimean hemorrhagic fever</td>
<td>Africa, Asia, Europe</td>
<td>Ticks</td>
</tr>
<tr>
<td>Dengue</td>
<td>Africa, Americas, Asia</td>
<td><em>Aedes (Stegomyia)</em> mosquitoes</td>
</tr>
<tr>
<td>Filariasis-bancroftian</td>
<td>Africa, Americas, Asia</td>
<td>Mosquitoes</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Asia</td>
<td><em>Culex</em> mosquitoes</td>
</tr>
<tr>
<td>Leishmaniasis visceral</td>
<td>Africa, Americas, Asia</td>
<td>Sandflies</td>
</tr>
<tr>
<td>Leishmaniasis cutaneous</td>
<td>Global</td>
<td>Sandflies</td>
</tr>
<tr>
<td>Lyme disease</td>
<td>Global</td>
<td>Ticks</td>
</tr>
<tr>
<td>Malaria</td>
<td>Global</td>
<td><em>Anopheles</em> mosquitoes</td>
</tr>
<tr>
<td>Plague</td>
<td>Africa, Americas, Asia</td>
<td>Fleas</td>
</tr>
<tr>
<td>Rift Valley fever</td>
<td>Africa</td>
<td>Mosquitoes</td>
</tr>
<tr>
<td>Ross River virus</td>
<td>Australia, Pacific islands</td>
<td>Mosquitoes</td>
</tr>
<tr>
<td>Trench fever</td>
<td>United States, Europe</td>
<td>Body lice</td>
</tr>
<tr>
<td>Venezuelan equine encephalitis</td>
<td>Americas</td>
<td>Mosquitoes</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Africa, Americas</td>
<td><em>Aedes (Stegomyia)</em> mosquitoes</td>
</tr>
</tbody>
</table>

Gratz 1999
Vector-borne Disease Dynamics

Susceptible population

- Migration (human, vector)
- Vector environment

Vector
- Survival, lifespan
- Reproduction/breeding patterns
- Biting behavior

Pathogen
- Survival
- Transmission
- Replication in host

WHO 2009
Climate vs. Weather Effects

**Climate**
- Average trend of weather patterns for a given location (averages over a long time period)
- Constrains the range of infectious disease
- E.g., malaria possibly in Kenyan Highlands

**Weather**
- Day-to-day climate conditions for a given location (shorter time periods, highly variable)
- Affects the timing and intensity of outbreaks
- E.g., dengue outbreaks in Sumatra

Epstein, 2001; Patz, 2002
Environmental Determinants of Human Disease

- Social and Economic Policies
- Institutions (including medical care)
- Living Conditions
- Social Relationships
- Individual Risk Factors
- Genetic/Constitutional Factors
- Pathophysiologic pathways
- Individual/Population Health

Modified from Kaplan, 2002
Research Challenge – Analyze and Understand Interactions!

- Social and Economic Policies
  - Institutions (including medical care)
- Living Conditions
- Social Relationships
- Individual Risk Factors
  - Genetic/Constitutional Factors
  - Pathophysiologic pathways
- Individual/Population Health

Climate Forcers?
Direct Effects of Climate Change on Vector-borne Disease

- Climate change has the potential to
  - Increase range or abundance of animal reservoirs and/or arthropod vectors
    - (e.g., Lyme, Malaria, Schistosomiasis)
  - Enhance transmission
    - (e.g., West Nile virus and other arboviruses)
  - Increase importation of vectors or pathogens
    - (e.g., Dengue, Chikungunya, West Nile virus)
  - Increase animal disease risk and potential human risk
    - (e.g., African trypanosomiasis)

Greer et al., 2008
Temperature Effects on Vectors and Pathogens

- **Vector**
  - Survival decrease/increase depending on the species
  - Changes in the susceptibility of vectors to some pathogens
  - Changes in rate of vector population growth
  - Changes in feeding rate and host contact

- **Pathogen**
  - Decreased extrinsic incubation period of pathogen in vector at higher temperatures
  - Changes in the transmission season
  - Changes in geographical distribution
  - Decreased viral replication

Gubler et al., 2001

WHO 2009
Precipitation Effects on Vectors

Vector

- Survival: increased rain may increase larval habitat
- Excess rain can eliminate habitat by flooding
- Low rainfall can create habitat as rivers dry into pools (dry season malaria)
- Decreased rain can increase container-breeding mosquitoes by forcing increased water storage
- Heavy rainfall events can synchronize vector host-seeking and virus transmission
- Increased humidity increases vector survival and vice-versa

Gubler et al., 2001
Precipitation Effects on Pathogens

- Pathogen
  - Few direct effects but some data on humidity effects on malarial parasite development

Gubler et al., 2001
Vector Activity

- Increased relative humidity increases activity, heavy rainfall decreases activity

- Increased activity increases transmission rates

Ogden et al., 2005; Vail and Smith, 1998

National Geographic

Ranger DJ

WHO 2009
**Vector Survival**

- Direct effects of temperature on mortality rates*
- Temperature effects on development: at low temperatures, lifecycle lengthens and mortality outstrips fecundity*

* Non-linear (quadratic) relationships with temperature

---

Tsetse mortality, Rogers and Randolph, 2003

WHO 2009
Vector and Host Seasonality

- Vector-borne zoonoses mostly maintained by wildlife
  - Humans are irrelevant to their ecology
- Vectors and their hosts are subject to seasonal variations that are climate related (e.g., temperature) and climate independent (e.g., day-length)
- Seasonal variations affect abundance and demographic processes of both vectors and hosts

WHO 2009
Vector and Host Seasonality (cont.)

- Vector seasonality due to temperature affects development and activity → transmission

- Host demographic processes (reproduction, birth and mortality rates), affected directly by weather and indirectly by resource availability → VBD epidemiology

WHO 2009
Evidence Reviewed by the IPCC

- Emerging evidence shows:
  - Altered the distribution of some infectious disease vectors (*medium confidence*)
  - Altered the seasonal distribution of some allergenic pollen species (*high confidence*)
  - Increased heatwave-related deaths (*medium confidence*)

IPCC AR4, 2007
Evidence of Climate Change Effects

- Some specific disease examples:
  - Malaria — East African highlands
  - Lyme disease — Canada
  - Schistosomiasis — China
  - Bluetongue Europe

Source: CDC
Source: USDA
Source: Davies Laboratory
Source: DEFRA

WHO 2009
Evidence: Malaria in Kenya

Legend
- Arid/Seasonal
- Endemic Coast
- Highland
- Lake Endemic
- Low risk

Image source: CDC

Kenya Division of Malaria Control, 2009

WHO 2009
Evidence: Lyme Disease

Source: USDA

Ogden et al., 2006a

WHO 2009
Evidence: Schistosomiasis

Yang et al., 2005

Temperature change from 1960s to 1990s
- 0.6-1.2°C
- 1.2-1.8°C

Freezing zone 1960-1990
Freezing zone 1970-2000

Hongze lake
Baima lake

Planned Sth-to-Nth water canal

Yangtze River
Shanghai

Source: Davies Laboratory

Evidence: Schistosomiasis

WHO 2009
Evidence: Bluetongue Disease

- *Culicoides* midge range previously restricted by Spain (south), Portugal (west), Greek islands (east)
- Now spread across southern Europe including France and Italy and moving northward
- Spatial congruence between Bluetongue incidence and climate changes support link

Purse et al., 2005

Temperature change: 1980s vs. 1990s

*Source: DEFRA*
Summary of Climate Change Effects

- Climate change has the potential to
  - Increase range or abundance of animal reservoirs and/or arthropod vectors
    - Lyme, Malaria, Schistosomiasis
  - Prolong transmission cycle
    - Malaria, West Nile virus, and other arboviruses
  - Increase importation of vectors or animal reservoirs
    - Dengue, Chikungunya, West Nile virus
  - Increase animal disease risk and potential human risk
    - African trypanosomiasis
Emerging\Re-emerging Infectious Diseases

- Introduction of exotic parasites into existing suitable host/vector/human-contact ecosystem (West Nile)
- Geographic spread from neighboring endemic areas (Lyme)
- Ecological change causing endemic disease of wildlife to “spill-over” into humans/domesticated animals (Lyme, Hantavirus, Nipah)
- True “emergence”: evolution and fixation of new, pathogenic genetic variants of previously benign parasites/pathogens (HPAI)
Case Study I: Malaria

WHO 2009
Case Study I: Malaria (cont.)

- 40% world population at risk
- 500 million severely ill
- Climate sensitive disease\(^1\)
  - No transmission where mosquitoes cannot survive
  - *Anopheles*: optimal adult development 28-32\(^\circ\)C
  - *P. falciparum* transmission: 16-33\(^\circ\)C
- Highland malaria\(^2\)
  - Areas on the edges of endemic regions
- Global warming → El Niño\(^3\)
  - Outbreaks

---

\(^1\) Khasnis and Nettleman 2005; \(^2\) Patz and Olson 2006; \(^3\) Haines and Patz, 2004

WHO 2009
Malaria Transmission Map

WHO, 2008b
Climate Impacts on Malaria

What are some of the potential direct and indirect pathways of influence?

Human

Vector
- *Anopheles* mosquitoes

Pathogen
- *Plasmodium*

Environment
- Temperature
- Water availability
- Humidity

WHO 2009
Competent Vectors

WHO 2009
“Climate change related exposures... will have mixed effects on malaria; in some places the geographical range will contract, elsewhere the geographical range will expand and the transmission season may change (very high confidence).” (IPCC 2007)
Projections for Malaria

WHO 2009
Recent Example: Improving Malarial Occurrence Forecasting in Botswana

- From annual time-series data: statistical relationship between summer (Dec-Jan) rainfall and post-summer annual malaria incidence (Thomson et al., 2006)
- Model applied, with good success, to previous meteorologically-modeled forecasts of summer rainfall
- This extended (by several months) the early-warning of post-summer malaria risk
Case Study 2: Lyme Disease

WHO 2009
Transmission Cycle of Lyme Disease

Two-year Life Cycle for *Ixodes scapularis*

1. Engorged females lay eggs
2. Larvae hatch and feed
3. Nymphs attach & feed on small mammals and birds
4. Adults seek medium to large mammalian hosts, primarily deer
5. Adult ticks active warm days winter with second peak of activity in spring
Lyme Disease Distribution in the United States of America

Note: This map demonstrates an approximate distribution of predicted Lyme disease risk in the United States. The true relative risk in any given county compared with other counties might differ from that shown here and might change from year to year. Risk categories are defined in the accompanying text. Information on risk distribution within states and counties is best obtained from state and local public health authorities.

WHO 2009
Passive Surveillance: Migratory Bird Distribution of Ticks (*I. Scapularis*)

Ogden et al., 2006a, 2008

WHO 2009
Hypothesis: Migratory Birds Carry *I. scapularis* Into, and Through, Canada

Northern-migrating ground-feeding birds stop-over in tick-infested habitat

Spring migration coincides with spring activity period of *Ixodes scapularis* nymphs

Nymphs feed continuously on birds for 4-5 days, then drop off into the habitat

WHO 2009
Prediction of Potential Extent of *I. scapularis* Populations at Present

Ogden et al., 2008
Prediction of Potential Extent of *I. scapularis* Populations by 2049

Ogden et al., 2008
Prediction of Potential Extent of *I. scapularis* Populations by 2079

Ogden et al., 2008
Prediction of Potential Extent of *I. scapularis* Populations by 2109

Ogden et al., 2008

WHO 2009
Case Study 3: Dengue
Climate Variability and Dengue Incidence

*Aedes* mosquito breeding¹:

- Highest abundance mean temp. $20^\circ C$, ↑ accumulated rainfall (150 mm)
- Decline egg laying monthly mean temperature $<16.5^\circ C$
- No eggs temp. $<14.8^\circ C$

Other studies:

- Virus replication increases ↑ temperature²
- Transmission of pathogen ≠ $>12^\circ C$³
- Biological models: small ↑ temperature in temperate regions → increases potential epidemics⁴

¹Vezzani et al., 2004; ²Watts et al., 1987; ³Patz et al., 2006; ⁴Patz et al., 1998
Dengue Transmission Map

WHO, 2008b

WHO 2009
Transmission Cycle of Dengue
Example of Weather Effects: El Niño

- Global warming intensifies El Niño
- Several studies found relationships between dengue epidemics and ENSO (El Niño Southern Oscillation)
- Drought conditions: increase water storage around houses → elevated *Aedes aegypti* populations
- Enhanced breeding opportunities when rainfall accumulates following drought (Kuno et al., 1995)

**ENSO** = global scale pattern of climate variation accounting for up to 40% of temperature and rainfall variation in Pacific

Hales et al., 1999

---

WHO 2009
Case 4: African Trypanosomiasis

T. b. gambiense

T. b. rhodesiense
African Trypanosomiasis

Trypanosomiasis

- Trypanosomosis, spread by tsetse flies, imposes a huge burden on African people and livestock
- Many aspects of the vectors’ life cycles are sensitive to climate, and spatial distributions can be predicted using satellite-derived proxies for climate variables

Source: David Rogers, Oxford
African Trypanosomiasis Distribution

WHO, 2008a

WHO 2009
African Trypanosomiasis Transmission

T.b. gambiense

T.b. rhodesiense

WHO 2009
Different Approaches to Modeling

- Will climate change affect VBD risk?
  - Focus has been on human-vector-human transmitted diseases (e.g., malaria and dengue)
  - Results of simplified modeling (e.g., Patz et al., 1998; Martens et al., 1999)
    - Climate change could greatly increase numbers of human cases (increase geographic range and altitude)
  - Different results of statistical pattern matching (e.g., Rogers and Randolph, 2000)
    - Climate change could have a small effect on numbers of human cases (small changes to geographic range/altitude)

WHO 2009
Limitations of Statistical Models

- Data quality and potential misclassification
- Explanatory variables climatic, land use (NDVI) and Fourier transformations (data dredging?)
- Pattern matching using “known” current distribution does not = “ecological” niche
- Ecological niche + societal-human factor → potential misclassification (false negatives)
Limitations of Statistical Models (cont.)

- Cannot use this model to obtain climate change projections and say that the effects of climate change are negligible
- Need to model climate change effects on ecological and societal-human factors simultaneously
Future Outlook?

- Two approaches (simple analytical model and statistical pattern matching) show different projected degree of effect of climate change on human-vector-human VBD risk
- The ideal is mechanistic models of transmission but these require a high number of parameters and detailed knowledge of the ecology of the diseases
- Both are useful techniques in assessing risk, but for human-vector-human VBD we need more “layers”
Future Outlook? (cont.)

- Both techniques may be more useful (side-by-side) for projections of risk of VBD
- Need to develop risk maps using the precautionary principle (worst case) and overlay these with mitigating factors or conservative estimates
Perspective

- Potential associations with climate but causality difficult to confirm
- Need to consider non-climatic contributing factors
- Very long future time scale
- Data needed for accurate projections not readily available
- Further empirical field work required to improve projections
- Nevertheless, opportunities exist for human adaptation
Opportunities for Adaptation

- Surveillance
- Precautionary approach
- Mainstreaming response
- Enhancing health system capacity
- Anticipating new and emergent pathogens changing VBD burden
A New Approach to Risk Assessment

Pathogen emerges → Disease in humans → Recognition & diagnosis → Response to epidemic → Surveillance/control applied in retrospect (= too late?)
Adaptations Include

- Precautionary approach to risk assessment
- Increased surveillance and monitoring (baseline + changing incidence)
- Improved tools for integrative risk assessment
- “Mainstreaming” through increased health system capacity
- Preparedness for new and emergent pathogens
Future Directions

- Vector-borne infections are intricately linked to the global environment
- Climate change has significant potential to change the epidemiology of these diseases
  - Disease prevention planners need to be aware of these changing risks
  - Researchers need to undertake new multidisciplinary approaches
  - New partners need to be invited to participate

WHO 2009
Conclusions

- Climate change will affect the distribution and incidence of some VBDs globally
- Impacts will vary from region to region
- Current evidence suggests impacts on some diseases may already be occurring
- Risk assessments constrained by complex transmission cycles and multiple determinants
Conclusions (cont.)

- Current models produce differing results
- Non-climatic factors remain important determinants of risk
- Impacts may include unanticipated emergence of new pathogens

WHO 2009
Acknowledgements

- Based in part on lectures developed by the author for courses taught at the University of Michigan, Ann Arbor, MI, USA.

- Some material was modified from the WHO “Training course for public health professionals on protecting our health from climate change (2009).”

- Supported by the Mauritius Ministry of Environment & Sustainable Development (No: MoESD/AAP/02/11)