

Simple drainage design

Darren Lumbroso, HR Wallingford Steven Wade, HR Wallingford

Transverse Slopes

Removes water from pavement surfaces in shortest amount of time possible

Longitudinal Slopes

Gradient longitudinal direction of highway to facilitate movement of water along roadway

Drains

Collect surface water

A typical intercepting drain placed in the impervious zone

Design

- > Adequate capacity
- > Minimum hazard to traffic
- > Hydraulic efficiency
- > Ease of maintenance

Desirable design (for safety): flat slopes, broad bottom, and liberal rounding

Ditch shape

- > Trapezoidal generally preferred considering hydraulics, maintenance, and safety
- > V-shaped less desirable from safety point of view and maintenance

Flow velocity

- > Depends on lining type
- > Typically 1 to 5% slopes used
- Should be high enough to prevent deposit of transported material (sedimentation)
 - For most linings, problem if S < 1%
- Should be low enough to prevent erosion (scour)
 - For most types of linings, problem if S > 5%

Use spillway or chute if drop in elevation is large

Rip rap for drainage over high slope

Find expected Q at point of interest Select a cross section for the slope, and any erosion control needed Manning's formula used for design Assume steady flow in a uniform channel

Manning's formula

 $V = \frac{R^{2/3}S^{1/2}}{1/2}$

Where:

V is the mean velocity (m/s) R is the hydraulic radius (m) = area of the cross section of flow (m²) divided by wetted perimeter (m) S is the slope of channel (m/m) n is the Manning's roughness coefficient

Side ditch/Open channel design basics

Q = VA Q = discharge (m³/s) A = area of flow cross section (m²)

US Federal Highways Agency has developed charts to solve Manning's equation for different cross sections

Runoff = 10 m³/sec (Q) Slope = 1% Manning's number = 0.015 Determine necessary cross-section to handle estimated runoff Use rectangular channel 2 m wide


```
Flow depth = d
Area = 6 \text{ m x d}
Wetted perimeter = 6 + 2d
```


Example (continued)

Q = $\frac{R^{2/3*}S^{1/2}}{n}$? d ≈ 1.2 m

Channel area needs to be at least 1.2 m x 2 m

Example (continued)

Find flow velocities?

Hydrologic and economic considerations

Alignment and grade of culvert (with respect to roadway) are important Similar to open channel Design flow rate based on storm with acceptable return period (frequency)

Any questions?

HR Wallingford Howbery Park, Wallingford, Oxfordshire OX10 8BA, United Kingdom tel +44 (0)1491 835381 fax +44 (0)1491 832233 email info@hrwallingford.com