

Methods to estimate flood flows

Darren Lumbroso, HR Wallingford

Estimating flows

Hydrology and flow estimation

The hydrological cycle The Hydrological Cycle

Nature of flood-producing system is complex interaction of:

- > Atmosphere
- > Land geology
- > Vegetation
- > Geomorphology
- > Soils
- > Activities of mankind

Therefore...

Modelling can only provide generalised estimates

Local information on observed floods is essential to calibrate models

Best information on future flood magnitudes is obtained from historical records

STATISTICAL METHODS

The return period, T, is the average interval (in years) between years containing a flood exceeding a given magnitude

The flood with return period T is referred to as the T-year flood

The probability, P, of a T year flood happening in any one year is (1/T)

Produces flood estimates based on recorded historical pattern of runoff events

1) Select 'annual maximum' floods from the period of record

- > Ensure 'independence'
- > Use 'water' years

2) List events in descending order, and give rank, 'm'
3) Count total number of events in series = 'n'

Statistical analysis of data (2)

n = 5

time

> Probability 'P' associated with each event can be computed from a number of formulae e.g. Gringorton:

$$P = \frac{m - 0.44}{n + 0.12}$$

- > To predict flows for any return period, need a graph
- > But... plotted on graph paper, P against Q is unlikely to follow a straight line.
- > Several theoretical distributions have been proposed e.g. Gumbel, Generalised Logistic

- > If, instead of plotting 'P' against Q, you plot the 'reduced variate' 'y' against Q
 where y = -In (-In) (1-P)
- > Then (for Gumbel), the points should be a straight line
- > Extrapolate line to predict design floods

400

350

300

250

200

150

100

50

2-33

10

Reduced variate

Discharge m³/s

Flood frequency plot

Confidence

A flood frequency curve relates the *size of a flood* to its *frequency of occurrence*

> Use knowledge of historical floods (providing no missing information about extreme floods)

> Increase 'n'

> Shift 'm'

200

100

40 50

period (years)

- T = 1000 yearsy = 6.91T = 100 yearsy = 4.60T = 50 yearsy = 3.90T = 25 yearsy = 3.20T = 10 yearsy = 2.25
- T = 5 years y = 1.50

Choice of statistical distribution, fitting procedure etc Duration of records normally so short that it is difficult to extrapolate with confidence Flow series may not be 'homogeneous', e.g.

- > Change in data collection method, position, datum
- > Land use change in the catchment (e.g. development)
- > Climate change

RAINFALL - RUNOFF METHODS

When shape and timing of flood hydrograph is to be determined

Technique for relating the runoff to the rainfall that caused it is the Unit Hydrograph (UH) method

Rainfall-runoff approach

UH is the rapid response of the catchment to unit depth of effective rainfall falling in unit time The concept makes three main assumptions:

- > Time invariance (unique and constant rainfall-runoff relationship)
- > Linearity (increase in rainfall causes proportional increase in runoff)
- > Superposition (total runoff is sum of individual runoff hydrographs)

What affects the flood generation process ?

CATCHMENT FEATURES WITH SIGNIFICANT INFLUENCE ON THE FLOOD GENERATION PROCESS

Catchment size, slope

Degree of urbanisation

Catchment wetness

Attenuation from lakes and reservoirs

Hydrograph computation

1) Construct unit hydrograph

Unit Hydrograph

Often the UH has a simple triangular form, where the UH peak and timebase are both functions of the time-to-peak, Tp

From equations (the example below is for the UK)

 $Tp = 4.27 DPSBAR^{-0.35} PROPWET^{-0.80} DPLBAR^{0.54} (1 + URBEXT)^{-5.77}$

From observed values of 'lag' time between centroid of rainfall and flow peak

Tp = 0.879 LAG 0.951

Construct unit hydrograph Estimate percentage runoff

From catchment descriptors (equation below is for the UK)

 $SPR = SPR_1HOST_1 + SPR_2HOST_2 + SPR_3HOST_3 + \dots + SPR_NHOST_N$

From observed values of 'baseflow index' (ratio of baseflow to total flow)

Percentage runoff is the proportion of the total rainfall input which shows up as rapid response runoff in the river

- 1) Construct unit hydrograph
- 2) Estimate percentage runoff
- 3) Calculate design storm event rainfall
- 4) Distribute according to chosen profile

Design storm event

Design storm duration, D

Design storm depth, P

Design storm profile

Design storm event

Critical Storm Duration (hours)

Storm Depth, P (mm) is taken from a rainfall model

Profile is dependent on climate

- 1) Construct unit hydrograph
- 2) Estimate percentage runoff
- 3) Calculate event rainfall
- 4) Distribute according to chosen profile
- 5) Convolute net rain and UH

Problem catchments

- > Small (< 0.5 km²)
- > Large (> 500 km²)
- > Permeable catchments e.g. chalk
- > Urban
- > Flat and low-lying, possibly with pumped drainage
- > Diversion/extensive channel works

Any questions?

HR Wallingford Howbery Park, Wallingford, Oxfordshire OX10 8BA, United Kingdom tel +44 (0)1491 835381 fax +44 (0)1491 832233 email info@hrwallingford.com