

Introduction to hydrometry

Darren Lumbroso, HR Wallingford

Hydrometric data Scope

Types of hydrometric data Validation of the observations Reduction and processing Production of information

- > Exceedence probabilities
- > Statutory requirements ?
- > Project requirements ?

Hydrometric data analysis Types of data

Rainfall measurements

- > daily gauges
- > self-recording gauges

Water levels

- > staff gauges
- > self-recording devices

River flows

- > Direct measurement
- > Structures
- > Rating curves

Precipitation Main features

Intensity

> Amount of rain falling in a given time (mm/hour)
Duration

> Period over which rain falls

Frequency

> Occurrence with which a certain depth of rain is likely to occur in a given time

Areal extent

> Area over which a point measurement can be held to apply

Tipping-bucket raingauge

Precipitation Issues to be aware of

- > Daily gauges may not be read every day
- > Data needs to be checked by Met Office (several months)
- > Daily total Normally applies at 9am for previous 24 hours
- > Beware of 'dry' days followed by large total on a regular basis
- > Don't be afraid to query data quality

Hydrometric data analysis Sources of error and uncertainty

- > Change in collection equipment
- > Equipment calibration
- > Levelling errors, change in datum
- > Movement of gauge boards
- > Change in river cross-section shape
- > Human error (transcription, typing, calculation)

- > A quality control check on long-term data sets
- > Uses two independent sources of data
- > Plot cumulative volume from the data sets
- > Use flow or rainfall
- > Look for changes to gradient
- > Might also pick up impact of development on runoff

Checking for errors Peak to peak correlation

- > Match up corresponding features of hydrographs
- > Checks on travel times
- > Checks on inflow rates
- > For guidance only in flow comparisons
- > Basis of simple flood warning systems

- > Relate river level or depth to discharge> Unique or looped curves
 - Storage and slope of flood wave
- > Allow data validation by checking latest measurements against earlier ones
- > Care needed when there is a change of hydraulic condition (e.g. out-of-bank flow)
- > Allows for extrapolation above the highest recorded flow

Rating curves Typical rating equations

> General form of rating over a range of level

 $Q = A (h - b)^c$

- Q is the flow
- h is the stage
- Coefficient b represents a local datum
- Coefficient c has some theoretical values for structures and simple cross-sections
- > Log Log fitting by eye or with software
- > Several equations, each for a range of level, or change in channel shape through time

Rating curves Typical example:

- > Adjust observations for rising or falling stage during measurement
- > Measured discharge exceeds "normal" flow on rising flood stage
- > Discharge is less than normal flow on falling flood stage
- > Biggest impacts for rapidly varying, out-ofbank flows and wide flood plains

Rating curves Practical difficulties

- > Extrapolation above the highest gauging
- > Backwater from a downstream control
- > Bypass flow under flood conditions
- > Out of bank section geometry
- > Seasonal changes (growth and decay of vegetation)
- > Morphological effects (mobile bed, alluvial friction)

Rating curves No data for high flows

Rating curves Backwater influence

Rating curves Backwater length

Rating curves Seasonal influence

Rating curves Extension and fitting methods

- > Use multiple equations
- > Each has a defined range of stage
- > Identify physically significant transitions
- > Break point at bankfull stage ?
- > Discontinuity at bankfull stage ?
- > Analyse out-of-bank flow separately?

Rating curve extension Out of bank fitting

Plot rating curves

Rating before flood		 Rating after flood	
Flow	Stage	Flow	Stage
(m ³ /s)	(m)	(m³/s)	(m)
0.0	0.0	0.0	0.0
6.4	0.4	6.4	0.0
16.8	0.8	16.8	0.4
30.5	1.2	30.5	0.8
45.4	1.6	45.4	1.2
62.8	2.0	62.8	1.6
81.8	2.4	81.8	2.0
102.4	2.8	102.4	2.4
126.6	3.2	126.6	2.8

Why could the rating curve have changed after the flood?

Any questions?

HR Wallingford Howbery Park, Wallingford, Oxfordshire OX10 8BA, United Kingdom tel +44 (0)1491 835381 fax +44 (0)1491 832233 email info@hrwallingford.com