

Hydrological and hydraulic processes and definitions

Darren Lumbroso, HR Wallingford

Runoff

- Flow that enters the river system following precipitation (rainfall)
- > A key area of study in hydrology
- Can be separated into different components
 - Fast/Direct
 - Slow
- Sometimes expressed as a percentage

- Stage is the water level measured above datum, symbol "h"
- > Measured in metres above a datum

- Discharge is the rate of volume of water flowing through a river section, symbol "Q"
- > Measured in
 - cubic metres per second or
 - cumec or
 - m³/s

- Discharge divided by flow area
 V = Q / A
- > The velocity is at right angles to the cross-section, units m/s
- > It is a typical value for the section
- In flood conditions we may calculate average velocities in the channel and for the flood plains

Velocity distribution

Variation across a section

Variation with depth

A rating curve

Plot of stage against discharge

- > A measure of the capacity of a river, Conveyance "K" depends on stage, h $Q = K(h) s^{1/2}$
 - > Q is discharge,
 - > s is water surface gradient

Backwater influence

>

- The upstream effects of a "control" on water level e.g.
 - -ponding behind a weir
 - raised water level from constricting the flood plain

Water surface profile

> Plot of stage against distance along the channel Backwater Profile

Hydraulic radius

Represents the shape of the cross section Ratio of Area, A to Wetted Perimeter, P R = A / P

>

The effect of the river bed and banks to slow down the water flow

Causes:

Vegetation Large scale feature Dune Ripple

Sediment

Solid material transported by the flow

Trash

> Floating debris carried by the flow

Trash

Compound channel

Functions of floodplains

Washland (water storage) Floodway (water movement)

Washland

Floodway

Probability and frequency

> Probability

- The chance that some event (e.g. a flood this year) might happen

> Frequency

- The rate of incidence of an event especially from observations
- > Often data on frequency is used to estimate probability

Flood probability

> Annual Probability, P

- The chance that the condition will be equalled or exceeded in any year
- Sometimes expressed as a percentage
- > Return Period, T
 - The average interval in years between occurrences of the condition
- > Relationship
 - T = 1/P

> Probability

- The chance that some event (e.g. a flood this year) might happen

> Frequency

- The rate of incidence of an event - especially from observations. Often data on frequency is used to estimate probability

> Design life

- The service life of an asset intended by the designer. This assumes some rate of deterioration up to a point where the asset requires replacement/refurbishment

Probability of an event occurring or being exceeded HR Wallingford during the design life of an asset structure

- > P = 1 $\left[1 \frac{1}{T}\right]^{DL}$
- > DL is the design life of the asset in years
- > T is the return period of the event for which the asset is designed

Return period T (years)	Design life (years)				
	30	60	100	120	
10					
25					
50					
75					
100					
200					
500					
1000					

Return period T (years)	Design life (years)				
	30	60	100	120	
10					
25					
50	an a sa				
75					
100					
200					
500					
1000					

Any questions?

HR Wallingford Howbery Park, Wallingford, Oxfordshire OX10 8BA, United Kingdom tel +44 (0)1491 835381 fax +44 (0)1491 832233 email info@hrwallingford.com