

Concepts and principles in hydraulics

Darren Lumbroso, HR Wallingford

What is hydraulics?

- > Study of how water moves
- > Deterministic based on mass conservation and force balance
- > Uses principles of momentum and energy transfer
- > Provides water levels, velocities, flow rates

Links to other areas

Water resources -

> What are water levels for different flows in different seasons

River morphology -

> sediment carrying capacity

Water quality -

> velocities associated with flows and channel shapes and sizes

Conservation -

> velocity distributions, water levels
Fisheries -

> velocities, water depths

Open channel principles

Energy and Momentum Uniform Flow

> Channel conveyance

> Resistance equations
 States of flow
 Water surface profiles

Energy is the "capacity" to do "work"

- > Kinetic energy (from speed)
- > Potential energy (from position)
- > Also heat, sound etc
- > Each type has a magnitude (value) only
- > Energy "balance" on streamlines

> Total energy is conserved
 Energy "losses" arise because some energy
 types are ignored in analysis

Momentum is mass x velocity

- > Changed by forces and impulses
- > Use Newton's second law
- > Has magnitude and direction
- > Used to calculate forces on structures

> Can be applied where energy "losses" are large Scope for confusion!

Uniform flow profile

Uniform flow

- > Central to understanding of open channel hydraulics
- > Energy "line", water surface slope and channel bed are all parallel
- > The depth is called "Normal Depth"
- > Several assumptions in the analysis
- > Rarely occurs in practice!

Assumptions are:

- > steady flow
- > regular shape of cross-section
- > no change of velocity, depth or slope with distance along channel
- > rate of "loss" of potential energy balances work done against flow resistance - but ...

What is really happening?

Equation relating slope, channel dimensions and velocity

$$Q = K s^{1/2}$$

- > Q is discharge [m³/s]
- > K is conveyance [m³/s]
- > s is water surface slope

Conveyance represents the flow capacity of the channel

What is conveyance?

Links channel dimensions, shape and roughness - many formulae available Manning's equation:

$$K = A R^{2/3}$$

n

> K is conveyance

> A is area

> R is hydraulic radius

> n is Manning's roughness coefficient

Hydraulic Radius

Represents the shape of the cross section Ratio of Area, A to Wetted Perimeter, P R = AΡ Area A

P

Q = K s^{1/2} K = A R ^{2/3} /n R = A / P Q = A R^{2/3} (s^{1/2} / n)

Given a section shape, we can calculate A and P With information on slope and roughness we can calculate discharge

- > A number which describes the resistance of the channel to flow
- > Depends upon the resistance equation being used
- > We concentrate on Manning's equation due to its international use
- > It has limitations e.g. varies with depth

- > Bed surface material
- > Channel irregularity
- > Channel alignment and sinuosity
- > Depth and discharge velocity
- > Vegetation and sediments
- > Gradient (as surrogates for other parameters)

Sinuosity $S = L_R/L_S$

Sinuous river

Interaction between channel and floodplain

Evidence of flow interaction

Classification of flows

Sub-critical

> Slow and deep - low kinetic energy
Super-critical

> Fast and shallow - high kinetic energy Critical

> Special, unique relation between velocity and "mean" depth, y

$$V_{\rm c} = (gy)^{1/2}$$

- Froude number definition Fr = V $(g y)^{0.5}$ where V is velocity (m/s) y is depth (m) g is acceleration due to gravity (m/s²) Fr < 1 subcritical flow
- Fr = 1 critical flow (maximum discharge for a given slope)
- Fr > 1 supercritical flow

Transition - Hydraulic jump

Transition to supercritical flow

Photograph from BBC website

Interpreting flow profiles

Pool and riffle locations

Riffle and pool

What have we learnt?

Simple principles of different flow states Definition and calculation of :

- > Uniform flow
- > Conveyance
- > Flow resistance

Typical water surface profiles for various conditions

Any questions?

HR Wallingford Howbery Park, Wallingford, Oxfordshire OX10 8BA, United Kingdom tel +44 (0)1491 835381 fax +44 (0)1491 832233 email info@hrwallingford.com