Vulnerability of the Pra River Basin to water stress under future development (population growth and climate change)

Emmanuel Obuobie

Water Research Insitute, Council for Scientific and Industrial Research, Accra, Ghana

1st August, 2012

Background

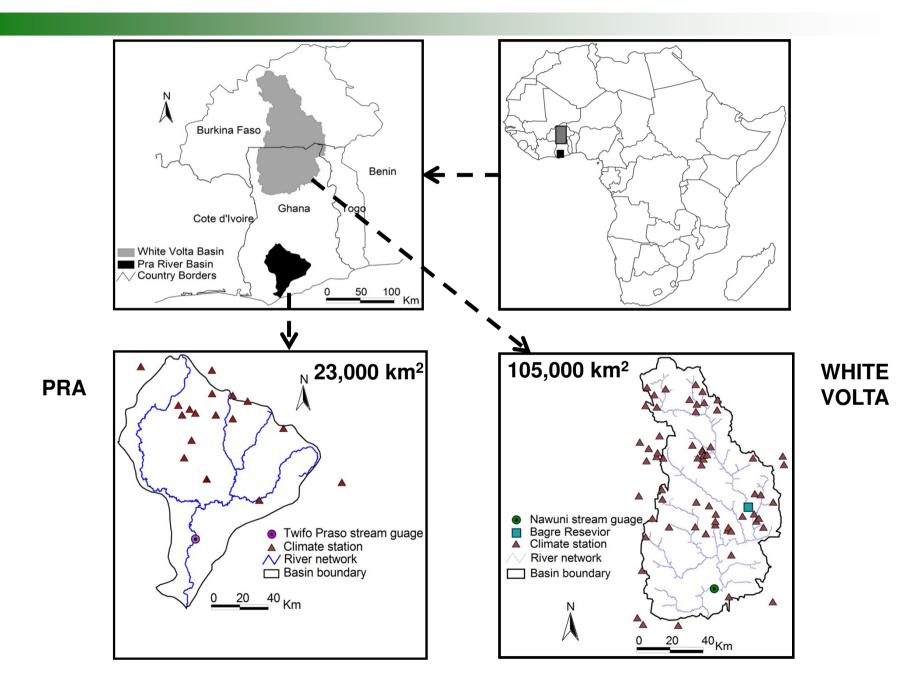
Climate Change in Africa and Ghana

- IPCC climate forecast for Africa indicates:
 - warmer and wetter
 - dryer with frequent extreme events of flood and drought
- Ghana:
 - Steady rise in temperature (GMA data: 1961-1990)
 - 30 year absolute increase of 1°C
 - Impact on hydrologic cycle and water resources
- Climate Change comes with enormous challenges
 - Nationally set targets of sustainable development
 - Millennium Development Goals (MDGs)

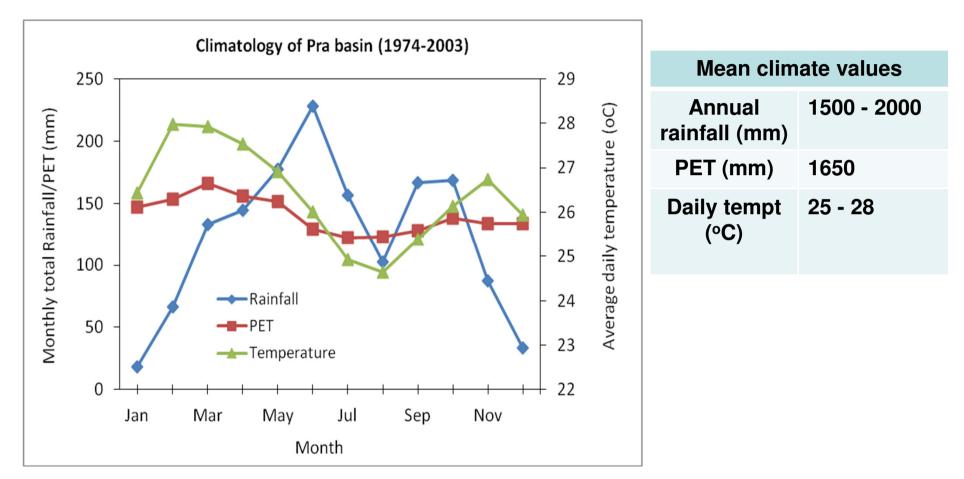
Background - 2

- Measures to deal with climate change
- Mitigation (reducing sources and increasing sinks)
 - Reducing CO₂ emissions
- Adaptation (adjusting human and natural systems to moderate harm)
 - Focus of this steady
 - Designing adaptation measures require an understanding of the impacts of climate change on water resources

Objectives

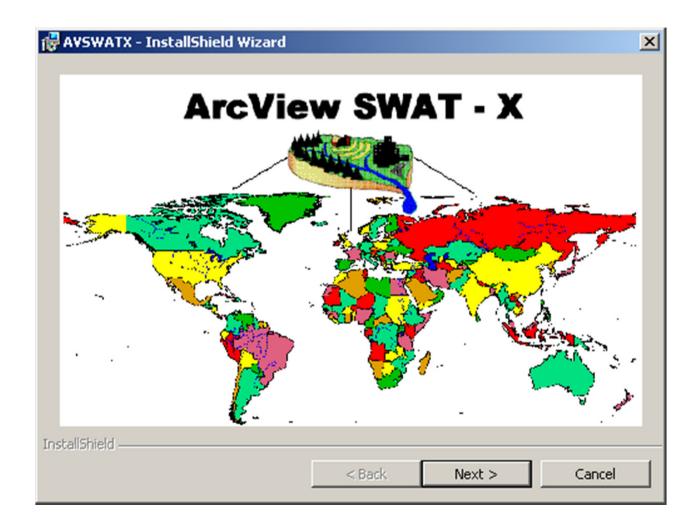

Overall Objective

To generate scientifically sound impact-specific information that can be used to directly inform preparation of local and national adaptation measures on climate change in the water sector in Ghana


Specific objectives

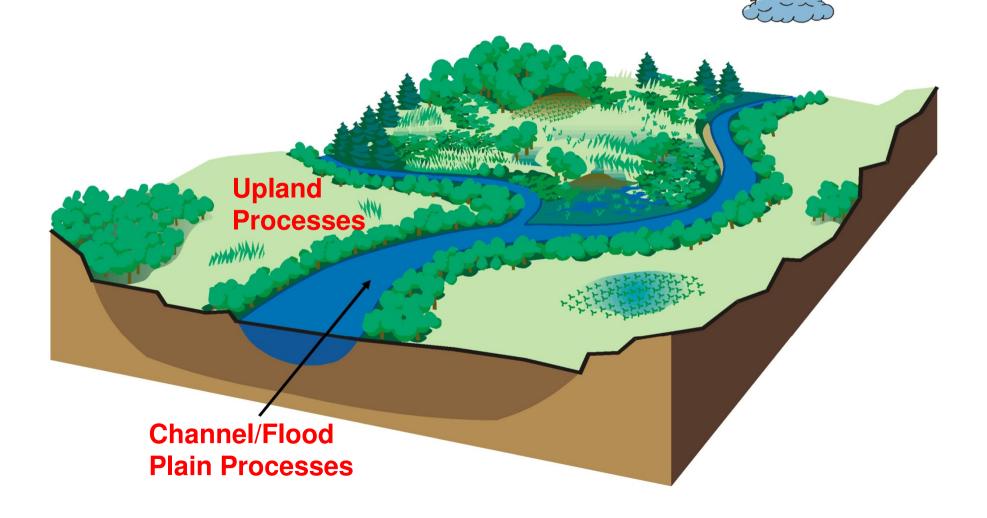
- Estimate the impact of climate change on streamflow; and
- Assess vulnerability of the study basin to water stress conditions
- Recommend adaptation measures for sustainable management of the water resources

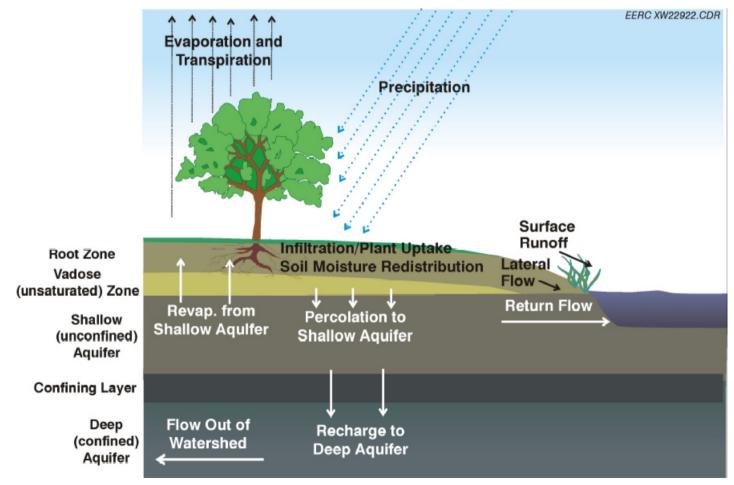
River Basins



Climatology of Pra Basin

Climatology of the Pra Basin (Data source: GMA)


Hydrologic Modeling with SWAT (Neitsch et al., 2005)


- Model Description
 - Semi-distributed model
 - Uses a GIS interface
 - Readily available inputs data
 - Computationally efficient
 - Wide use

SWAT Watershed system

- Simulates 2 main processes: Upland and Channel

SWAT Hydrologic cycle

SWAT hydrologic cycle (EERC-University of North Dakota, 2008, modified from Neitsch et al., 2005)

SWAT water balance equation (Neitsch et al., 2005):

$$SW_{t} = SW_{0} + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_{a} - W_{seep} - Q_{gw})$$

where SW_t is the final soil water content (mm), SW_0 is the initial soil water content on day *i* (mm), *t* is the time (days), R_{day} is the amount of precipitation on day *i* (mm), Q_{surf} is the amount of surface runoff on day *i* (mm), E_a is the amount of evapotranspiration on day *i* (mm), W_{seep} is the amount of water entering the vadose zone from the soil profile on day *i* (mm), and Q_{qw} is the amount of return flow on day *i* (mm).

SWAT key input data

- Digital elevation model
- Soil map and data (e.g., BD, SHC, AWC, ST, OC, etc)
- Land use map and data (e.g., LAI, PHU, etc)
- Climate data (e.g., P, Tmax, Tmin, RH, SR or SSH, WS)
- Streamflow data

> SWAT calibration and validation:

Calibration	1964 - 1978
Validation	1971 - 1994

> SWAT performance evaluation:

- Nash-Sutcliffe model efficiency coefficient (NSE)
- Coefficient of determination (R²)
- Percent Bais (PBAIS)

Methods - 3

Climate change scenario:

- ➢ GCM: ECHAM4
- IPCC "SRE" Scenario: A1B
- Downscaling: Stochastic weather generator LARS-WG
- \succ Simulation periods:
 - Baseline:1961-1990
 - Future time slices: 2006-2035 (scenario 2020); 2036 2065 (scenario 2050)

Method - 4

- Water Stress Condition (WSC):
 - Falkenmark indicator/water stress index (Falkenmark et al., 1989)
 - Water Stress: 1700 cm³/person/year
 - Water Scarcity: 1000 cm³/person/year
 - Absolute Water Scarcity: 500 cm³/person/year
 - Assessment periods
 - Baseline: 1964-1994
 - Future time slice 1: 2006-2035 (Scenario 2020)
 - Future time slice 2: 2036-2065 (Scenario 2050)

Method - 5

> Under each time scenario, the WSC was assessed considering

- Population growth only (<u>Without</u> Climate Change)
- Population growth + Climate Change (<u>With</u> Climate Change)
- Mobilization assumptions
- 100% mobilization
- 30% mobilization(due to constraints)

Results

SWAT Calibration and validation

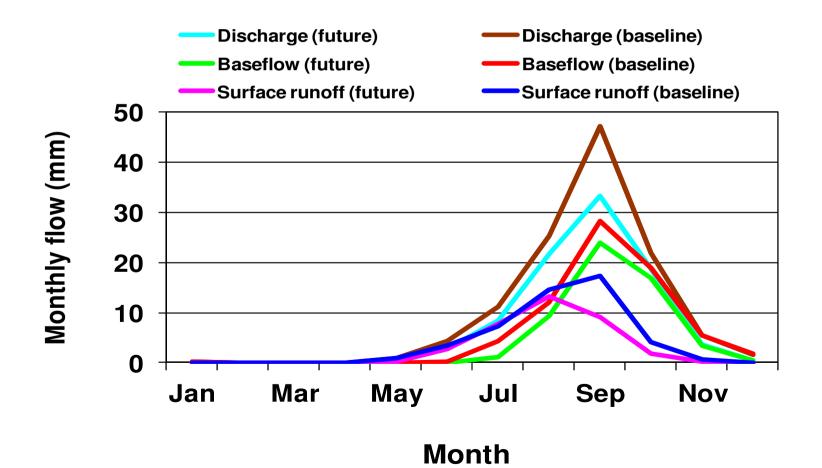
Simulation type	Period	Monthly R ²	Monthly NSE	Daily R ²	Daily NSE
Calibration	1964-1978	0.90	0.88	0.82	0.84
Validation	1979-1994	0.88	0.86	0.80	0.79

Minimum requirement for successful calibration of SWAT: NSE > 0.50; R^2 > 0.60; PBAIS <u>+</u>25% (Moriasi *et al.* 2007; Santhi *et al.* 2001)

Climate change impact on streamflow

Temperature and rainfall projections

Scenario	Temperature (°C)	Rainfall* (mm)	
Baseline	26.4	1450.0	
(1961-1990)			
2020 (2006-2035)	26.9	1191.6	
Change	+ 0.5	-17 %	
2050 (2036-2065)	28.3	1074.2	
Change	+ 1.9	-26 %	


Climate change impact on streamflow

- Changes in mean annual streamflow

Scenario	Streamflow (mm)		
Baseline (1961-1990)	226.1		
· · · · · ·			
2020s (2006-2035)	175.8		
Change (%)	-22		
2050s (2036-2065)	121.5		
Change (%)	-46		

Climate change impact on streamflow

- Changes in mean monthly flow

Vulnerability to water stress

– Population projections for Pra basin

Annual growth rate (%)	1990	2020	2050
2.7	4,034,713	6, 874,190	15,287,442

- Annual streamflow in Pra basin under baseline and climate change

Mean annual streamflow in million m ³			
Baseline (1964-1994)	2020	2050	
5,200	4,043	2,795	

Vulnerability to water stress

– Dynamics of water availability (m³/person/year) in the Pra Basin with and without climate change

Year	No climate change		Climate change		
	100%	30%	100%	30%	
baseline	1288.9	386.7	1288.9	386.7	
2020	756.4	226.9	588.2	176.5	
2050	340.2	102.1	182.2	54.8	

Water stress (Green):1700 m3/p/year; Water scarcity (Yellow):1000 m3/p/year; Absolute scarcity (Red): 500

m3/p/year

Conclusions

- SWAT is able to adequately simulate the streamflow of the White Volta and Pra River Basins
- Estimated mean annual streamflows for the 2020 and 2050 scenarios show important decreases over the baseline
- Without climate change, the Pra basin is already water stressed and projected to attain water scarcity condition by 2020
- Climate change will worsen the water stress condition in the basin

Recommendations

Recommendation

- Adoption and implementation of integrated water resources management (IWRM) with emphasis on water use efficiency, water conservation, environmental integrity
- Investing in appropriate cost-effective adaptive land and water management practices
- Groundwater could be developed and used as adaptation strategy to reduce the vulnerability of the basin inhabitants.
- Population growth needs to be checked via (i) promotion and accessibility to family planning services, (ii) Female education and empowerment

Thank You