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1.  INTRODUCTION

The IPCC Fourth Assessment Report (AR4) was
based on large data sets of projections of future climate
produced by 18 modelling groups worldwide, who per-
formed a set of coordinated climate experiments in
which several global climate models (GCMs) were run
for a common set of experiments and various emissions
scenarios (Solomon et al. 2007). These data sets are
freely available from the IPCC Data Distribution Cen-
tre (www.ipcc-data.org) and can be used by the re-
search community to assess the impact of changing cli-
mate on various systems of interest, including impacts
on agricultural crops and natural ecosystems, biodiver-
sity and plant diseases. Multi-model ensembles em-
phasize the uncertainty in climate predictions resulting
from structural differences in the global climate mod-
els as well as uncertainty in variations of initial condi-

tions or model parameterisations. These uncertainties
in climate predictions need to be accounted and trans-
lated into uncertainty in impacts.

However, the direct use of climate predictions from
the AR4 multi-model ensemble in conjunction with
process-based impact models could be difficult,
because these predictions are typically available as
monthly means or changes in monthly means of cli-
matic variables, but process-based models depend on
daily time-series of weather as one of their main
inputs. Even when daily output is available from
GCMs, the coarse spatial resolution of GCMs and
large uncertainty in their output on a daily scale, par-
ticularly for precipitation, means that the output is not
appropriate for direct use with process-based models
and analysis of extreme events (Semenov 2007).
Despite an increasing ability of GCMs to successfully
model present-day climate, the latest generation of
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GCMs still has serious difficulties in reproducing daily
precipitation and temperature (Trigo & Palutikof 2001).
Output from GCMs requires application of various
downscaling techniques (Barrow et al. 1996, Bardossy
1997, Wilby et al. 1998, Mearns et al. 1999, Murphy
1999, Salon et al. 2008). One of the downscaling tech-
niques to create daily site-specific climate scenarios
makes use of a stochastic weather generator (WG;
Wilks 1992, Barrow & Semenov 1995, Wilks & Wilby
1999, Semenov 2007). A WG is a model which, after
calibration of site parameters with observed weather at
that site, is capable of simulating synthetic time-series
of daily weather that are statistically similar to
observed weather (Richardson & Wright 1984, Wilks &
Wilby 1999). By altering the parameters of the WG
using changes in climate predicted from GCMs, it is
possible to generate synthetic daily weather for the
future. WGs are extensively used to generate long
time-series weather data suitable for the assessment of
agricultural and hydrological risk (Mavromatis &
Hansen 2001); to provide the means of extending the
simulation of daily weather to unobserved locations by
spatially interpolating parameters of WG (Semenov &
Brooks 1999); and to serve as a computationally inex-
pensive tool to produce daily site-specific climate sce-
narios for impact assessments of climate change
(Mearns et al. 1999, Dubrovsky et al. 2004, Evans et al.
2008, Semenov 2009, Semenov & Halford 2009). The
use of WGs in climate change studies allows explo-
ration of the effect of changes in mean climate as well
as changes in climatic variability and extreme events
(Porter & Semenov 2005). The latter could be critically
important for analysis of complex non-linear systems,
including biological systems, that incorporate non-lin-
ear interactions between system components and the
surrounding environment (Semenov & Porter 1995,
Moot et al. 1996, Mearns et al. 1997). A non-linear
model can potentially produce very different re-
sponses depending on whether or not changes in cli-
matic variability are incorporated into climate scenar-
ios (Porter & Semenov 1999, 2005).

The objective of the present study is to describe how
climate predictions in the form of a multi-model
ensemble can be used for impact assessments which
require local-scale climate scenarios. The approach is
based on the LARS-WG weather generator (Semenov
2007, 2008b). A new version of LARS-WG is described,
which incorporates predictions from the AR4 multi-
model ensemble (Table 1). Given site parameters
derived from observed daily weather, WG can gener-
ate local-scale daily climate scenarios for the future at
any location in the world consistent with the AR4 cli-
mate predictions. By treating each GCM prediction
from the AR4 ensemble as an equally possible evolu-
tion of climate, we can explore the uncertainty in im-

pact assessment resulting from the uncertainty in cli-
mate predictions. As an illustration, the local-scale
climate scenarios based on the IPCC AR4 multi-model
ensemble were generated and used to assess the
changes in probability of heat stress around flowering
for wheat at several locations in Europe, an event
which can result in a large number of sterile grains and
substantially reduce the crop yield (Wheeler et al.
2000).

2.  METHODS

2.1.  AR4 multi-model ensemble of climate predictions

A new version of the LARS-WG incorporates predic-
tions from 15 GCMs used in the IPCC AR4 (Solomon et
al. 2007). Table 1 summarises important features of
these GCMs, including grid resolution, available Spe-
cial Report on Emissions Scenarios (SRES) emissions
scenarios (Nakicenovic & Swart 2000) and their refer-
ence time periods for climate predictions. Climate
models are referred to in LARS-WG by their acronyms
used in AR4 (Table 1). For most of the GCMs from the
AR4 multi-model ensemble, climate predictions are
available for the SRES emissions scenarios SRB1,
SRA1B and SRA2. The key assumptions of the SRES
emissions scenarios and corresponding increases in
CO2 concentrations are given in Table 2 (Nakicenovic
& Swart 2000). All of these GCMs are coupled
atmosphere–ocean models and most of them were run
for the period 1960–2100. The outputs from these
GCMs are available as monthly means of climatic vari-
ables, including precipitation, maximum and minimum
temperatures and radiation for the baseline period cor-
responding to 1960–1990 and the periods 2011–2030,
2046–2065 and 2081–2100. Some of the climate cen-
tres made available 2 independent runs of their GCMs,
which differed in their initial conditions and/or model
parameterization. Only the output from the first run for
each GCM has been incorporated into LARS-WG.

There is a growing confidence that GCMs provide a
realistic quantitative prediction of climate change, es-
pecially at the continental scale (Solomon et al. 2007).
These models are routinely assessed by comparing
their simulations with observed data of the atmosphere,
ocean and land surface. GCMs are regularly evaluated
through multi-model intercomparisions (Covey et al.
2003, Déqué et al. 2007, Huebener et al. 2007, Jacob et
al. 2007). Some climate models have been used at
shorter time scales for predicting weather (over days or
weeks) or seasonal forecasting (over months) (Palmer et
al. 2004, 2008). GCMs have demonstrated skills in sim-
ulating circulation patterns and seasonal and interan-
nual variability (Palmer et al. 2005, Doblas-Reyes et al.
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2006). The ability of GCMs to reproduce
these and other important climate attrib-
utes increases our confidence that they in-
corporate the key physical processes criti-
cal for the modelling of climate change. In
addition, GCMs have been used to simu-
late paleoclimate, including the Last
Glacial Maximum that occurred about
21 000 yr ago, and were able to successfully
reproduce features such as the magnitude
and broad-scale pattern of oceanic cooling
during the last ice age (Ramstein et al.
2007, Otto-Bliesner et al. 2009).

However, the coarse spatial resolution of
GCMs results in significant errors and
large uncertainty in their output at a local
scale, particularly for precipitation. The
source of errors is related to the fact that
many small-scale processes cannot be rep-
resented explicitly in climate models, and
must be approximated. This happens be-
cause of constraints in computing power,
limitations in our understanding of small-
scale processes and the lack of detailed
observations required for validation. Vari-
ous downscaling techniques have been
developed to underpin studies on regional
and local-scale climate change, including
dynamic downscaling by regional climate
models (Giorgi & Mearns 1991, Murphy
1999), statistical downscaling (Hewitson &
Crane 1996, Wilby et al. 1998, Murphy
1999) and WGs (Wilks 1992, Semenov &
Barrow 1997). In this paper we explore the
methodology based on a WG.

2.2.  Revision of LARS-WG

LARS-WG is a stochastic WG based on
the series approach (Racsko et al. 1991),
with a detailed description given in Seme-
nov (2007). LARS-WG produces synthetic
daily time series of maximum and mini-
mum temperatures, precipitation and solar
radiation. The WG uses observed daily
weather for a given site to compute a set of
parameters for probability distributions of
weather variables as well as correlations
between them. This set of parameters is
used to generate synthetic weather time
series of arbitrary length by randomly
selecting values from the appropriate dis-
tributions. By perturbing parameters of
distributions for a site with the predicted
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changes of climate derived from global or regional cli-
mate models, a daily climate scenario for this site could
be generated and used in conjunction with a process-
based impact model for assessment of impacts. LARS-
WG has been tested in diverse climates and demon-
strated a good performance in reproducing various
weather statistics including extreme weather events
(www.rothamsted.bbsrc.ac.uk/mas-models/larswg.php;
Semenov et al. 1998, Semenov 2008a). 

LARS-WG uses a semi-empirical distribution (SED)
to approximate probability distributions of dry and wet
series, daily precipitation, minimum and maximum
temperatures and solar radiation. SED is defined as the
cumulative probability distribution function (PDF). The
number of intervals (n) used in SED is 23, which offers
more accurate representation of the observed distribu-
tion compared with the 10 used in the previous ver-
sion. For each climatic variable v, a value of a climatic
variable vi corresponding to the probability pi is calcu-
lated as:

vi = min{v:P(vobs ≤ v) ≥ pi} i = 0, … , n (1)

where P() denotes probability based on observed data
{vobs}. For each climatic variable, 2 values, p0 and pn,
are fixed as p0 = 0 and pn = 1, with corresponding val-
ues of v0 = min{vobs}  and vn = max{vobs}. To approxi-
mate the extreme values of a climatic variable accu-
rately, some pi are assigned close to 0 for extremely
low values of the variable and close to 1 for extremely
high values; the remaining values of pi are distributed
evenly on the probability scale.

For precipitation, 3 values close to 1 are used: pn–1 =
0.999, pn–2 = 0.995 and pn–3 = 0.985. These values allow
better approximation of events with extremely high daily
precipitation that occur with very low probability, e.g.
rainfall during hurricanes. Because the probability of
very low daily precipitation (<1 mm) is typically rela-
tively high and such low precipitation has very little ef-
fect on the output of a process-based impact model, we
use only 2 values, v1 = 0.5 mm and v2 = 1 mm to approx-
imate precipitation within the interval [0,1] with the cor-
responding probabilities calculated as pi = P(vobs ≤ vi) i =
1,2. For example, the values p1 = 0.301 and p2 = 0.416
were estimated at Rothamsted, UK, for December.

To account for extremely long dry and wet series, 2
values close to 1 are used in SEDs for wet and dry
series, pn–1 = 0.99 and pn–2 = 0.98. For maximum and
minimum temperatures, 2 values close to 0 and 2 val-
ues close to 1 are used to account for extremely low
and high temperatures, i.e. p2 = 0.01, p3 = 0.02, pn–1 =
0.99 and pn–2 = 0.98. All pi values (0 < i < n) for radia-
tion are distributed evenly between minimum and
maximum values because of the physical constraints
on minimum and maximum values of daily radiation.

In the previous version of LARS-WG, normalised
residuals of maximum and minimum temperature (sep-
arate for dry and wet days) were approximated by the
normal distribution with monthly means and standard
deviations approximated by the Fourier series. It has
been shown (Qian et al. 2004, Semenov 2008b) that for
locations where temperature residuals are not normally
distributed, simulation of extreme high or low tempera-

4

Scenario Key assumptions CO2 concentration
2011–2030 2046–2065 2081–2100

B1 ‘The sustainable world’ Rapid change in economic structures, ‘dematerialization’ 410 492 538
including improved equity and environmental concern. 
There is a global concern regarding environmental and 
social sustainability and more effort in introducing clean 
technologies. The global population reaches 7 billion by 2100.

B2 ‘The world of techno- A heterogeneous society emphasising local solutions to 406 486 581
logical inequalities’ economic, social and environmental sustainability rather than 

global solutions. Human welfare, equality and environmental 
protection all have high priority.

A1B ‘The rich world’ Characterised by very rapid economic growth (3% yr–1), low 418 541 674
population growth (0.27% yr–1) and rapid introduction of new
and more efficient technology. Globally there is economic and
cultural convergence and capacity building, with a substantial 
reduction in regional differences in per capita income.

A2 ‘The separated world’ Cultural identities separate the different regions, making the 414 545 754
world more heterogeneous and international cooperation less 
likely. ‘Family values’, local traditions and high population 
growth (0.83% yr–1) are emphasised. Less focus on economic 
growth (1.65% yr–1) and material wealth.

Table 2. CO2 concentrations (ppm) for selected climate scenarios specified in the Special Report on Emissions Scenarios (SRES) 
(Nakicenovic & Swart 2000). CO2 concentration for the baseline scenario, 1960–1990, is 334 ppm
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tures could be poor compared with the observed data.
For example, a frequency distribution of minimum daily
temperature for January at Kuopio, Finland, for 1970–
2000 is presented in Fig. 1A. This distribution is asym-
metrical with the minimum temperature not exceeding
5°C and a long tail of low temperatures reaching –40°C.
Although the mean minimum temperature was repro-

duced well, LARS-WG version 4.0 significantly overpre-
dicted the high end of minimum temperature, with the
maximum of minimum temperature reaching 15°C
(Fig. 1C). In the LARS-WG version 5.0, the maximum
and minimum temperatures for dry and wet days are
approximated by semi-empirical distributions calculated
for each month, with auto- and cross-correlations calcu-
lated monthly (previously, only annual auto- and cross-
correlation coefficients were used). Auto- and cross-
correlation between climatic variables was modelled as
in a previous version by applying the multivariate auto-
regressive model to the normalised residuals. The intro-
duction of these changes has significantly improved the
simulation of extreme temperatures (Fig. 1B).

Semi-empirical distributions for climatic variables are
calculated on a monthly basis by LARS-WG. Some of the
variables follow an annual cycle, e.g. temperature and
radiation are higher during summer in the Northern
Hemisphere and lower in winter. To reproduce a smooth
seasonal cycle of daily minimum or maximum tempera-
ture and daily radiation, we compute the SED for a given
day by interpolating between 2 monthly SEDs. Let us as-
sume that we need to compute SED, for a day k (day of
the year), Dk. We denote km as a middle day of the month
m and assume that |k – km| ≤ 15. To calculate Dk, we use
3 monthly distributions Dm – 1, Dm and Dm + 1. Without los-
ing generality, we assume that km–1 < k ≤ km. The result-
ing distribution for a day k, Dk , is a weighted sum of the
2 distributions Dm–1 and Dm:

Dk = p(x)Dm–1 + (1 – p(x))Dm (2)

where p(x) = 2α –1x α, x = d/N(m), N(m) is a number of
days in a month m. The parameter α is selected to re-
duce the difference between Em, the mean value of the
distribution Dm, and E– m, the mean value for the month
m calculated from values generated from interpolated
distributions Dd for each day d of this month, i.e.:

(3)

So, α is selected to satisfy the following conditions

(4)

where Av is an absolute error acceptable for a variable
v, and Rv is a relative error as a proportion of Em. After
computing E– m from Eqs. (2) and (3), an inequality
Eq. (4) could be re-written as:

(5)

where Δm– = E m – E m–1 and Δm+ = E m+1 – E m. We also
limit α to 1 ≤ α ≤ 4. If E m is a local minimum or local
maximum, i.e. Δm– and Δm+ have different signs, then
for all days k, where |k – km| ≤ 15 we use an unmodified
distribution Dm.
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Fig. 1. Comparison between generated and observed minimum
temperatures for the LARS-WG stochastic weather generator
versions 5.0 and 4.0 for January at Kuopio, Finland. (A) Fre-
quency distribution for observed daily minimum temperature;
(B) Q-Q plot of generated vs. observed minimum daily temper-
ature for LARS-WG 5.0 and (C) Q-Q plot for LARS-WG 4.0
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2.3.  Generation of climate scenarios

To generate climate scenarios at a site for, let’s say,
2011–2030 and the SRA1B emissions scenario, the
LARS-WG baseline parameters, which are calculated
from observed weather for this site for the period 1960–
1990, are adjusted by the Δ-changes for 2011–2030 and
the SRA1B emissions predicted by GCM for each cli-
matic variable for the grid covering the site (using an
interpolation between adjacent neighbour grids to
smooth step-wise grid changes). If observed data is
available for the period different from the baseline 1960–
1990, then an appropriate correction to Δ-changes to ac-
count for this difference will be applied. Monthly predic-
tions for each GCM from the AR4 multi-model ensemble
are available for minimum and maximum temperatures
(or only mean temperature for some GCMs), precipita-
tion and radiation for the SRA1B, SRA2 and SRB1 emis-
sions scenarios and the time periods 1960–1990, 2011–
2030, 2046–2065 and 2081–2100. Δ-changes were calcu-
lated as relative changes for precipitation and radiation
and absolute changes for minimum and maximum tem-
peratures. No adjustments for distributions of dry and
wet series and temperature variability were made, be-
cause this would require daily output from the GCMs
which is not readily available from the IPCC Data Cen-
tre. An example of Δ-changes calculated by LARS-WG
from the output of the HADCM3 global climate model
for the SRA1B emissions scenario for 2046–2065 at
Rothamsted, UK, is presented in Appendix 1.

Climate predictions from each GCM from the AR4
multi-model ensemble should be treated as equally
probable predictions of the evolution of climate. For
each GCM and each combination of the SRES emis-
sions scenario and a future time period, 300 yr of daily
site-specific climate scenarios are generated and used
by a process-based impact model to compute selected
impact statistics. To present an impact statistic, com-
puted for all GCMs from the AR4 multi-model ensem-
ble, we combined them as a box plot. A box plot illus-
trate the range of uncertainty in predicting the impact
associated with the uncertainty in climate predictions

from the AR4 multi-model ensemble. It would be a
mistake to interpret a box plot as a ‘true’ probability
statement on the possible magnitude of the impacts.
Predicted uncertainty is conditioned on the ensembles
of climate models used for simulation.

3.  EXAMPLE OF IMPACT ASSESSMENT

In a recent publication (Semenov 2009), changes in
the magnitude and spatial patterns of 2 impact statistics
related to wheat growth in England and Wales were
analysed. The impact statistics included the probability
of heat stress around flowering, which can substantially
reduce final grain yield, and the drought stress index.
To compute these statistics, the Sirius wheat simulation
model (Jamieson et al. 1998, Jamieson & Semenov
2000) was used to predict wheat growth for a selection
of local-scale climate scenarios based on the output
from the Hadley Centre regional climate model, the so-
called UKCIP02 climate predictions (Hulme et al. 2002,
Semenov 2007). It was shown that, despite higher tem-
perature and lower summer precipitation predicted in
the UK for the 2050s, the reduction in simulated grain
yield due to drought stress is predicted to be smaller
than that at present, because wheat will mature earlier
in a warmer climate and avoid severe summer drought.
However, the probability of heat stress around flower-
ing that might result in considerable yield losses is pre-
dicted to increase significantly. A conclusion has been
made that breeding strategies in the UK for the future
climate might need to focus on wheat varieties which
would be tolerant to heat stress rather than to drought.

To illustrate the use of the AR4 multi-model ensem-
ble, we examine whether the conclusion that the prob-
ability of heat stress around flowering is likely to in-
crease in the UK stays valid when considered across
the range of AR4 multi-model climate predictions. Ad-
ditionally, we analyse changes in probability of heat
stress around flowering at 3 locations in southern Eu-
rope: Seville, Spain; Claremont-Ferrand, France; and
Montagnano, Italy (Table 3). These locations represent
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Site Cultivar Soil type Sowing date

Rothamsted, UK Mercia (obligate winter wheat with moderate to weak photoperiod Rothamsted 10 Oct
response; grown in the UK)

Seville, Spain Cartaya (bread spring wheat with weak photoperiod response; Cordoba 1 Jan
grown in Spain)

Clermont-Ferrand, Thesee (obligate winter wheat with moderate to weak photoperiod Clermont-F-C1 15 Nov
France response; grown in France)

Montagnano, Italy Creso (durum wheat, widely cultivated in Central Italy over the past 20 yr; ITAS2005 25 Nov
very limited vernalization requirement and high sensitivity to photoperiod; 
Motzo & Giunta 2007)

Table 3. Wheat cultivars and typical sowing dates for selected sites
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diverse climates in Europe with highly variable precip-
itation patterns and a large range of maximum summer
temperatures (Fig. 2). For example, the average annual
precipitation at Seville is 524 mm, compared to 903 mm
at Montagnano, whilst the top figures of monthly mean
maximum temperature vary from 21°C at Rothamsted,
UK, up to 35°C at Seville. Changes in monthly mean
maximum temperature (Fig. 3) and precipitation
(Fig. 4) as predicted by 15 GCMs used in the IPCC AR4
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for the SRA1B emissions scenario for 2046–2065 com-
pared with the baseline scenario (1960–1990) at these
sites are presented as box plots.

An increase in probability of heat stress around flow-
ering may represent a major threat for wheat produc-
tion in Europe. In an experiment on the effects of CO2

and temperature on wheat yield, it was observed that
high temperatures around flowering can result in a
large proportion of sterile grains (Mitchell et al. 1995,
Wheeler et al. 1996a, Ferris et al. 1998). Although the
effect of reduced grain numbers on the final yield
could be partly compensated for during grain filling by
the production of larger grains, the yield losses could
be still significant (Wheeler et al. 1996b). Various lev-
els of temperature that affect the grain number were
reported. We computed 2 probabilities, that the maxi-
mum temperature exceeds 27 and 30°C at least once
during flowering. Sirius was run for wheat cultivars
typically grown at the selected locations (Table 3).
Model parameters for these cultivars were calibrated
previously using observed wheat data (Wolf et al. 1996,
Martre et al. 2006). Typical soils and sowing dates
were selected for simulations (Table 3). Sirius was run
for 300 yr of synthetic daily weather for the baseline
scenario representing 1960–1990, and for 2046–2065
with the SRA1B emissions scenario. It has been shown
that elevated CO2 concentration increases the photo-
synthetic rate in wheat (C3 plant) over a wide range of
radiation (Lawlor & Mitchell 1991, Long et al. 2005). In
Sirius, radiation-use efficiency is proportional to CO2

concentration and increases by 30% for a doubling in
CO2 concentration (Jamieson et al. 2000, Ewert et al.
2002). A CO2 concentration of 334 ppm was used for
the baseline (1960–1990), and 541 ppm was used for
the 2050s with the SRA1B emissions scenario (Table 2).

The estimated probabilities of heat stress around
flowering for the baseline scenario and for the ensem-
ble of 15 AR4 GCM climate scenarios for the SRA1B
emissions in the 2050s are presented in Fig. 5. As ex-
pected, the probability of heat stress around flowering
for the baseline scenario is much higher in the south of
Europe than in the north. At Seville, the probabilities
of exceeding 27 and 30°C are 0.89 and 0.43, respec-
tively, with corresponding probabilities at Rothamsted
of only 0.11 and 0. This may suggest that cultivars
bred in southern Europe are already adapted to toler-
ate a high level of heat stress at flowering and have
the capacity to compensate for this at the current level
of heat stress. In previous work (Ferris et al. 1998),
2 parameters were identified to describe the reduction
of grain number due to high temperature at flowering.
These parameters are: (1) a critical temperature thres-
hold, Tcr, beyond which the final grain number starts to
decline linearly with the temperature increase; (2) the
slope of grain number decline β; and (3) the potential
grain weight, Gpot, which determines the ability of the
crop to recover the lost yield by growing larger grains
(Mitchell et al. 1993, Wheeler et al. 1996b). It is likely
that all 3 parameters are cultivar-specific and are dif-
ferent for wheat cultivars grown in southern and north-
ern Europe.
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The probabilities of heat stress at flowering for the
2050s SRA1B emissions scenario were computed inde-
pendently for each GCM from the AR4 multi-model
ensemble and the results are presented as a box plot
showing the median of the magnitude of change and
the uncertainty of predictions (Fig. 5). It is interesting
to note that, against expectations, the relative increase
in the probability of heat stress around flowering
between the current level and the predicted median of
probabilities calculated using the AR4 climate predic-
tions is much lower for southern locations. In Montag-
nano, for example, the probability is predicted to be
lower for the future scenario than at present for both
thresholds of 27 and 30°C. This can be explained as
follows. For northern locations, wheat reaches flower-

ing much later than for southern locations. For exam-
ple, at Rothamsted, average anthesis date (defined as a
date when 50% of plants have flowered) is 171.0 (day
of the year) compared with 141.5 at Montagnano. Be-
cause wheat development is controlled by accumu-
lated thermal time, an increase in temperature will ad-
vance anthesis date. For the HADCM3 climate model
with SRA1B emissions, the anthesis date is predicted to
advance during the 2046–2065 time period by 11.6 d at
Rothamsted and 11.8 d at Montagnano. This advance
in anthesis date will offset temperature at anthesis by a
larger value at Montagnano than at Rothamsted, be-
cause temperature follows an annual cycle and the
gradient at anthesis date at Montagnano is higher than
at Rothamsted (Fig. 6). Simulation results may suggest
that the need for breeding for new wheat varieties,
which are tolerant to heat stress around flowering, is
likely to be more pressing for northern Europe.

4.  LARGE PERTURBED PHYSICS ENSEMBLES

Recently, a systematic approach was proposed to
explore the uncertainty of a single climate model to
model parameterization, a so-called perturbed physics
ensemble (PPE) (Murphy et al. 2004, Stainforth et al.
2005). In each experiment, model parameters were set
to a range of values derived from multiple prior distri-
butions estimated by experts, based on their knowl-
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edge of the relevant physical systems. The size of a
PPE is considerably larger than a multi-model ensem-
ble and could increase to hundreds of (Murphy et al.
2004) or even several thousand (Stainforth et al. 2005)
individual climate experiments. In the latest climate-
prediction.net study (Sanderson et al. 2008), 15 para-
meters of a single model, HadSM3, were perturbed.
Even though there was a dependency between some
of the parameters and each parameter was perturbed
discretely, taking only 3 possible values in most cases,
the total number of individual combinations required
to explore the full parameter space was enormous
(~50 000). After ‘filtering’ sets of predictions from
HadSM3 to retain only those that remained stable in
the control simulation, the number of different para-
meterizations was reduced to over 6000 (Sanderson et
al. 2008).

For large PPEs, the approach based on the assess-
ment of impacts for each climate model experiment be-
comes quickly computationally impossible, because of
the demands for processor time and the storage capac-
ity required for the impact model outputs and daily cli-
mate scenarios. An alternative method to explore un-
certainty in climate predictions from very large PPEs
might be needed.

One possibility is to sample a smaller subset, Simpact,
from a large PPE, SPPE, of climate experiments. If we
know the size of this subset Simpact, then the following
sampling procedure can be applied. Let N be the size of
SPPE, and M be the size of a subset Simpact used for the
assessment of impacts. We assume that M << N. We also
assume that there is a metric ρ in SPPE, i.e for any 2 cli-
mate predictions S1 and S2, ρ(S1,S2) computes a dis-
tance between climate predictions. The metric ρ can be
computed using a set of GCM parameters used to para-
meterize a climate model, or this metric could be based
on one of the statistics derived from actual climate pre-
dictions, e.g. change in the global or regional tempera-
ture. The first scenario S1 for a subset Simpact is selected
randomly from S1

PPE = SPPE. Then, we remove the N/M
climate predictions from S1

PPE with the shortest dis-
tances to S1 as measured by ρ; the remaining climate
predictions form the set S2

PPE. The second scenario S2 for
a subset Simpact is selected randomly from S2

PPE. After re-
moving the N/M climate predictions from S2

PPE with the
shortest distances to S2, we construct S3

PPE; and so on.
This procedure resembles Latin hypercube sampling
(McKay et al. 1979, Iman et al. 1981).

If the size the subset Simpact is not known in advance,
and is to be determined by an interactive stopping rule,
e.g. sample from SPPE until some convergence criterion
is met, then the Sobol sequence method can be adapted
to sample climate predictions randomly, avoiding clus-
tering and moving to finer scales as the number of sam-
ples increases (Sobol 1967).

If a probabilistic climate prediction is available for PPE,
then it can be used to sample from a joint distribution of
climatic variables (Rougier et al. 2009). Recently, several
studies have developed methodologies to construct
probabilistic climate predictions from a large PPE (Har-
ris et al. 2006, Murphy et al. 2007, Sanderson et al. 2008,
Tebaldi & Lobell 2008, Rougier et al. 2009). Murphy et al.
(2007) described a methodology, developed in the
Hadley Centre, appropriate for the estimation of joint
probability distribution functions of key climate variables
at spatial scales of 25 km, for use in assessments of re-
gional climate impacts. This methodology is based on the
large PPE generated using a family of parameterizations
of the HadSM3 model, which comprises the HadAM3 at-
mospheric global climate model coupled to a simple non-
dynamic mixed layer ocean. A key element of this
methodology is the development of a Bayesian emulator
of the climate model (Rougier et al. 2009). Trained on the
available predictions from the perturbed physics ensem-
ble, the statistical emulator can provide estimates with
associated errors for a range of climatic variables. These
estimates are consistent with the HadSM3 climate pre-
dictions but on a much finer resolution in the model pa-
rameter space. Considering the high dimension of the
HadSM3 parameter space, it is not possible to explore
this space using only HadSM3 simulations (Murphy et al.
2007). When joint PDFs of changes in climate variables
are constructed, they can be used to sample climate pre-
dictions for impact assessment in a more consistent way
compared with sampling directly from a PPE itself. In a
different study, an example of a ‘non-statistical’ emula-
tor is given, based on a neural network technique ap-
plied for analysis of the multi-thousand ensemble from
climateprediction.com, which can reproduce nonlinear
interactions between model parameters and enabled a
fuller exploration of the multidimensional model para-
meter space (Sanderson et al. 2008).

5.  CONCLUSIONS AND FUTURE WORK

In the present study we outlined a methodology to
assess the impact of climate change based on a multi-
model ensemble of GCM predictions and to explore
the range of uncertainty in impacts associated with dif-
ferences between individual predictions. We treated
each GCM prediction as an equally probable evolution
of climate. For each climate projection, we generated a
local-scale climate scenario, e.g. 300 yr of site-specific
daily weather, and computed distributions of various
output variables from a crop simulation model, such as
grain yield, drought stress or heat stress at flowering
(only the latter is presented). These distributions char-
acterise the uncertainty related to interannual variabil-
ity in a local-scale climate scenario.
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To assess the range of uncertainty related to differ-
ences in climate predictions from the AR4 multi-model
ensemble, we computed an impact index for each
GCM, e.g. the probability of heat stress at flowering as
predicted by HadCM3. Values of this impact index cal-
culated for all GCMs were then combined in a box
plot. This final graph shows the range of uncertainty in
prediction of an impact index resulting from limitations
in our current understanding of the climate system as
modelled by GCMs. We have to note that this summary
box plot should not be interpreted as a probability
statement of what might happen, but only as an uncer-
tainty range. It has been pointed out by Rougier (2007)
that making a probabilistic prediction about future cli-
mate requires explicit specification of a probability dis-
tribution for climate itself.

GCMs and impact models are undergoing continu-
ous development and improvement; they are methodi-
cally tested against observed data (the process called
model validation), which increases our confidence in
the models’ predictions and reduces the level of uncer-
tainty (Jamieson et al. 2000, Ewert et al. 2002, Palmer
et al. 2005).

LARS-WG version 5 incorporates climate predictions
from the AR4 multi-model ensemble. Nevertheless, to
generate local-scale climate scenario, the user needs
observed daily weather for a site for 20 to 30 yr to esti-
mate the LARS-WG site parameters. This step can be
made redundant if a data set of site parameters for a
region of interest is prepared in advance. Recently, a
data set, ‘ELPIS’, of the site parameters for western and
central Europe has been developed. Site parameters
were estimated for daily precipitation, minimum and
maximum temperatures and radiation for a 25 km grid
across Europe using observed daily weather for the
period 1982–2008. ELPIS should soon be made avail-
able to the user community. 

Regional climate models (RCM) have shown a sub-
stantial improvement in modelling spatial weather pat-
terns compared with GCMs due to much finer spatial
resolution (25 to 50 km) (Beniston et al. 2007, Salon et al.
2008). Currently, in the EU-FW6 ENSEMBLES project
(Jacob et al. 2007), 14 regional climate models were used
to downscale GCM predictions for Europe with the spa-
tial resolution of 25 km (and/or 50 km) and for the period
1951–2050 (or 1951–2100 for some RCMs). The daily
outputs from the ENSEMBLES RCMs have been re-
cently made available online from the project website
(ensemblesrt3.dmi.dk). We are planning to incorporate
all RCM predictions from the EU-FW6 ENSEMBLES
project into the next release of LARS-WG. This will pro-
vide much better spatial resolution of predicted climatic
changes for Europe and will allow incorporation of
changes in climatic variability as well as changes in
mean climate into local-scale climate scenarios.
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// LARS-WG5.11
// Columns are:
// [1] month 
// [2] relative change in monthly mean rainfall
// [3] relative change in duration of wet spell
// [4] relative change in duration of dry spell 
// [5] absolute changes in monthly mean min temperature 
// [6] absolute changes in monthly mean max temperature
// [7] relative changes in daily temperature variability 
// [8] relative changes in mean monthly radiation
[VERSION]
LARS-WG5.11
[NAME]
RR_RR_HADCM3_SRA1B_2046-2065
[BASELINE]
1975
[FUTURE]
2055
[GCM PREDICTIONS]

Jan 1.14 1.00 1.00 1.80 1.80 1.00 0.95
Feb 1.30 1.00 1.00 2.11 2.11 1.00 0.99
Mar 1.33 1.00 1.00 1.80 1.80 1.00 0.97
Apr 0.99 1.00 1.00 0.91 0.91 1.00 1.02
May 0.75 1.00 1.00 2.13 2.13 1.00 1.11
Jun 0.90 1.00 1.00 2.05 2.05 1.00 1.09
Jul 0.63 1.00 1.00 2.39 2.39 1.00 1.08
Aug 0.57 1.00 1.00 3.63 3.63 1.00 1.13
Sep 0.75 1.00 1.00 3.34 3.34 1.00 1.15
Oct 1.16 1.00 1.00 3.00 3.00 1.00 1.05
Nov 1.19 1.00 1.00 1.98 1.98 1.00 1.07
Dec 1.02 1.00 1.00 1.46 1.46 1.00 1.04

Appendix 1. A scenario file calculated by the LARS-WG stochastic weather gen-
erator for the HADCM3 global climate model for the SRA1B emissions scenario 

for the time period 2046–2065 at Rothamsted, UK
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