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Abstract. Climate change scenarios with a high spatial and temporal resolution are required in the
evauation of the effects of climate change on agricultural potential and agricultura risk. Such
scenarios should reproduce changes in mean weather characteristics as well as incorporate the
changes in climate variability indicated by the globa climate model (GCM) used. Recent work
on the sensitivity of crop models and climatic extremes has clearly demonstrated that changes in
variability can have more profound effects on crop yield and on the probability of extreme weather
events than simple changes in the mean values. The construction of climate change scenarios based
on spatial regression downscaling and on the use of alocal stochastic weather generator is described.
Regression downscaling trand ated the coarse resolution GCM grid-box predictions of climate change
to site-specific values. These values werethen used to perturb the parameters of the stochastic weather
generator in order to simulate site-specific daily weather data. Thisapproach permitstheincorporation
of changes in the mean and variability of climate in a consistent and computationally inexpensive
way. The stochastic weather generator used in this study, LARS-WG, has been validated across
Europe and has been shown to perform well in the simulation of different weather statistics, including
those climatic extremes rel evant to agriculture. The importance of downscaling and the incorporation
of climate variability are demonstrated at two European sites where climate change scenarios were
constructed using the UK Met. Office high resolution GCM equilibrium and transient experiments.

1. Introduction

In order to devel op scenarios of climate change which are of greatest usein impacts
assessment the scenarios should be tailored to their area of application. The first
stage in this process is a sensitivity analysis of the impact model in question
to changes in the relevant climate variables. Changes in those variables which
may result in noticeable changes in the output of the impact model should be
incorporated in order to produce redlistic climate change scenarios.

In most modelling studies investigating the impact of climate change on crop
production changesin only the meansof the climate variables have been considered.
These changes, derived from global climate models (GCMs), were usually applied
to historical weather data to construct scenarios of climate change relevant to
agricultural applications (e.g, Kenny et al., 1993; Rosenzweig et al., 1993). Recent
work on the sensitivity of crop simulation models to changesin climate variables
has clearly shown that changes in climate variability can have a significant effect
on crop growth and associated agricultural risk (Semenov and Porter, 1994, 1995;
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Mearnset a., 1996). Extreme weather events, such as drought or hot or cold spells,
can have severe consegquences for crops, and the frequency of occurrence of such
events has been shown to be better correlated with changes in the variability of
climate variables than with changes in the mean values (Katz and Brown, 1992).
As crop-growth simulation models incorporate a mixture of non-linear responses
of the crop to its environment, it is thus equally important for impact assessments
to include changes in climate variability as well as changes in mean climate.
Assessments of the impacts of climate change on agricultural production and the
appraisal of associated risks to the food supply need to bear the above in mind.

The tools which are most widely used to construct scenarios of climate change
for impacts assessment are GCMs (Giorgi and Mearns, 1991; Viner and Hulme,
1994). These complex computer models describe the climatological conditions of
the Earth at afinite number of grid points (a grid point model) or by a finite num-
ber of mathematical functions (a spectral model). The limiting factor for running
GCMsis computational power; acompromise must be reached between the spatial
resolution of the model and the computer time required to perform an experiment.
Hence, most GCMs tend to have a coarse spatial resolution which leads to approx-
imations in the model representation of meteorological variables at the regional or
local scale. These so-called ‘sub-grid scale’ processes have to be parameterised in
the model rather than solved realistically as a function of the fundamental equa-
tions. However, despite these limitations, GCMs still provide an opportunity to
examinethe evolution of climate under avariety of conditions (Gates et al., 1990).
There are anumber of factors which limit the direct use of their output in scenario
development. Theseinclude:

1. The ahility of the control experiment to adequately simulate the larger-scale
features of the present-day climate. Thisisone of thereasonsthat the difference
between the control and perturbed integrationsis used, rather than the raw data
from the integrations themselves.

2. The coarse spatial grid-output is on the scale of hundreds of kilometres rather
than the tens of kilometres needed for impacts assessment. This coarse reso-
lution also means that sub-grid scale processes, such as precipitation, are not
adequately represented and important regional topographic features are also
omitted. Hence, although GCMs may be able to simulate large-scale features
of climate well, their simulation of regional climate is considerably poorer.

In this study the output from two GCM experiments was combined with a sto-
chastic weather generator, LARS-WG, in order to produce climate change scenarios
which were suitablefor usein agricultural impact assessment. The requirements of
climate change scenarios for agricultural impacts assessment may be summarised
asfollows:
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e scenarios should be site-specific with daily temporal resolution;

e they should include the full set of climate variables required by the impacts
model;

e they should include changesin means and climate variability; and

e contain an adequate number of yearsto permit risk analysis.

Thisstudy may be consideredin two sectionsand the results of each are detailed.
First, climate change scenarios with high spatial resolution were constructed using
regression downscaling to obtain site-specific climate data from the coarse grid-
scale GCM data. Second, changesin climate variability wereincorporated into the
scenarios. In this case, the GCM data were utilised without any downscaling in the
absence of a robust method to downscale coarse resolution variability to the site-
specific scale. The basic method of producing the climate change scenariosis the
same regardless of whether downscaling or climate variability areincluded. Climate
changeinformation, derived from GCMs, was used to perturb the parameters of the
stochastic weather generator, LARS-WG, which had previously been calibrated
for each site using observed daily climate data. Daily scenario data were then
generated from these perturbed parameters. Results are reported for two sites,
namely Rothamsted, UK and Seville, Spain.

2. Methodology

LARS-WG and the construction of the scenarios from the GCM data are now
described in more detail.

2.1. THE LARS-WG STOCHASTIC WEATHER GENERATOR

Modelsfor the simulation of time-series of asuite of climate variableswith certain
statistical properties have a long history. The first examples are found in the ear-
ly 1960s (e.g., Gabriel and Neumann, 1962; Bailey, 1964). Initialy models were
developed to smulate a single variable, most often daily precipitation for use in
hydrological applications. From the beginning of the 1980s models which could
generate awhole suite of climate variables, stochastic weather generators, became
available (Richardson, 1981; Racsko et al, 1991). Stochastic weather generators
may be site-specific, i.e., they generate weather time-seriesfor asingle site, or spa-
tial, i.e., they generate weather for anumber of locations simultaneously, reflecting
the spatial correlation of the different climate variables (Bardossy and Plate, 1991,
Hutchinson, 1995). Originally there were two main reasons for the development
of stochastic weather generators. The first was the provision of a means of simu-
lating synthetic weather time-series with certain statistical properties which were
long enough to be used in an assessment of risk in hydrological or agricultural
applications. The observed weather series normally required as input into math-
ematical models of hydrological processes or simulation models of crop growth
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are often insufficiently long to allow the estimation of the probability functions
of rare events. The second purpose was to provide the means of extending the
simulation of weather time-series to unobserved locations. For example, in order
to simulate precipitation at an unobserved location the statistical parameters of a
weather generator need to be cal culated using data from the nearest meteorol ogical
stations. These parameters are then interpolated using one or other interpolation
techniques (e.g., kriging or thin-plate smoothing splines) and time-series are then
generated using the interpolated values of the parameters (Hutchinson, 1995). It is
worth noting that a stochastic weather generator is not a predictive tool which can
be used in weather forecasting, but is amean of generating time-series of synthetic
weather statistically ‘identical’ to the observations. Of course, it must be borne
in mind that statistical ‘identity’ depends on the number of statistics used for the
comparison.

New interest in local stochastic weather simulation has arisen as a result of
climate change studies. Output from GCMs cannot be used directly as climate
change scenariosfor the reasonsmentioned earlier. Theweather generator, however,
can serve as a computationally inexpensive tool to produce multiple-year climate
change scenarios at the daily timescal e which incorporate changesin the mean and
climate variability.

In this study the LARS-WG* stochastic weather generator has been used (Rac-
skoetal., 1991; Semenov and Porter, 1994). It generatesasuite of climatevariables,
namely, precipitation, maximum and minimum temperature and solar radiation.
Precipitation is considered as the primary variable and the other three variables
on a given day are conditioned on whether the day is wet or dry. The simulation
of precipitation occurrence is based on distributions of the length of continuous
sequences, or series, of wet and dry days. This is different from the approach
suggested by Bailey (1964) and re-used by Richardson (1981), which applies a
first-order Markov chain to describe the occurrence of wet and dry days. The main
limitation of the ‘Markovian’ approach is that the Markov chain has a ‘limited
memory’ of rare events and, for example, could fail to simulate accurately long
dry series at certain locations (Racsko et al., 1991). This problem was resolved by
using the series approach, where the distribution of wet and dry seriesis derived by
accumulating information from the observations. Consideration of long dry series
is important in agricultural studies since long droughts significantly affect crop
growth and can dramatically decreaseyields. Mixed exponential distributionswere
used to model the dry and wet series so that LARS-WG would be applicable over a
wide range of European locations. The amount of rain on wet dayswas also simu-
lated using a mixed exponential distribution. The distribution of the other wesather
variables, i.e., maximum and minimum temperature and solar radiation, is based
on the current status of the wet or dry series. These variables were considered as
stochastic processes with daily means and standard deviations conditioned on the

* The LARS-WGisin apublic domain and aversion for IBM PC (Windows 95/NT) is available
from ftp.lars.bbsrc.ac.uk.
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Table|
Description of the European sites

Site Latitude Longitude Periodof Meanannua Mean annual
(°N) (°E) record precipitation  temperature
(mm) (°C)
Jokioinen, Finland 60.8 235 1961-90 5824 3.6
Rothamsted, UK 51.8 -0.4 196190 684.5 9.2
Munich, Germany  48.1 11.6 1951-80 9475 81
Seville, Spain 374 -5.9 197591 530.1 18.0
Athens, Greece 38.0 23.7 196590 367.7 17.6

wet and dry series. The techniques used to analyse the processes are very simi-
lar to those presented in Yevjevich (1972) and Richardson (1981). The seasonal
cycle of means and standard deviations was removed from the observed record and
the residuals approximated by a normal distribution. These residuals were used to
analyse a time correlation within each variable. Fourier series were then used to
interpolate seasonal means and standard deviations. The simulation of radiation
was independent from temperature.

Thefirst step in the production of daily weather data using a stochastic weather
generator was the evaluation of the model parameters for each of the European
test-sites (see Table I). Three other sites were used in addition to Rothamsted and
Seville in order to ascertain how well LARS'WG performed over a wide range
of climatological conditions. Observed daily data were used to calculate the site-
specific weather parameters; these parameters were then used by LARS-WG to
generate synthetic data. Use of at least twenty years of observed daily data is
recommended in order to determine robust statistical parameters. Various statistics
were comparedin order to ensurethat the generator performed well at each location.
For all sites except Seville 30 years of observed daily meteorological data were
used. Only 17 years of daily weather data were available for Seville. The weather
stetistics of the observed meteorological data were compared with 30 years of
generated data for each site. The following statistics were used in this comparison:
monthly mean precipitation amount, standard deviation of monthly precipitation,
mean length of the dry series, mean length of the wet series, mean number of wet
days, daily mean maximum and mean minimum temperature, standard deviation of
daily temperature, mean number of days with maximum temperature greater than
30°C, mean number of days with minimum temperature less than 0°C and daily
mean radiation.

Some of the results are presented in the Appendix, Tables A-1-1V. Mean daily
maximum and minimum temperature, their standard deviations and solar radiation
were simulated well by LARS-WG compared to the observationsfor each site. The
statistics of ‘extreme’ temperature, e.g., days with maximum temperature above
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30°Cand dayswith minimum temperature below 0°C, were alsoingood agreement
with the observed data. Monthly mean precipitation was, however, simulated less
accurately. The duration of wet and dry series was simulated relatively well for all
sites except Seville. A reason for this may be that the reduced amount of daily data
available at this site may have been insufficient to determine robust parameters
for LARS-WG. However, extremely long dry periods at Seville at the end of the
summer and the beginning of autumn were reproduced by the weather generator.
The number of wet days were reproduced well for ailmost all months at each site.
Itisapparent that LARS-WG generally performswell in simulating the magnitude
and seasonal cycle of the main weather statistics and consequently it was used at
all European sites without any additional modifications.

2.2. CONSTRUCTION OF THE CLIMATE CHANGE SCENARIOS

Datafrom the UK Met. Office high resolution GCM equilibrium (UKHI; Mitchell
et a., 1990) and transient (UKTR; Murphy, 1995; Murphy and Mitchell, 1995)
experiments were used in the construction of the climate change scenarios. For
UKHI, difference fields were calculated between the control and perturbed inte-
grations. However, construction of climate change scenarios from the transient
experiment was not so straightforward. One of the problems of UKTR is climate
drift inits control integration —there is a noticeable deviation (approximately 1°C)
from the initial ten-year average over the 75-year period of the simulation. How
this drift is handled affects the way in which the scenarios are constructed and
thus there are a number of different ways of calculating the change fields, each of
which makes assumptions about the climate variability and control integration drift
(Viner and Hulme, 1993). For our purposes the change fields from UKTR were
constructed by calculating the difference between a period in the climate change
integration and the corresponding years of the control integration. This definition
isappropriateif it isassumed that both the control and climate change integrations
exhibit similar drift and long-term variability.

Datafrom UKTR were available only asdecadal time-slices and the last decade,
model years 66—75, was selected for use. The global-mean temperature change
corresponding to this decade is 1.76°C. Depending on assumptions concerning
future greenhouse gas emissions and climate sensitivity arange of dates asto when
thistemperature change may occur can be calculated, but a best estimateistowards
the middle of the next century. The reader is referred to the latest report from
the Intergovernmental Panel on Climate Change (Houghton et a., 1996) for more
detailed discussion as to when such changes may occur. In the case of UKHI, the
equilibrium global-mean temperature change of 3.5°C is not expected to occur
before the latter years of the next century at the earliest, if at all.



USE OF A STOCHASTIC WEATHER GENERATOR 403

2.2.1. Scenarios Using Regression Downscaling

In order to produce scenarios of climate change at the scale required by crop-
growth simulation models, it was necessary to ‘downscale’ the coarse resolution
GCM datato specific sites. This procedure involved the development of relation-
ships between the coarse- and local-scal e data for the climate variables concerned.
There are currently a number of downscaling methodologiesin use, including cir-
culation patterns (e.g., Bardossy and Plate, 1991; Matyasovszky et al., 1993; Jones
and Conway, 1995) and regression techniques (e.g., Kim et al., 1984; Wigley et
al., 1990; Karl et a., 1990; von Storch et al., 1993). Both methods use existing
instrumental databasesto determine the rel ationships between large-scaleand local
climate. Regression techniques develop statistical relationships between local sta-
tion dataand grid-box scale, area-average values of say, temperature and precipita-
tion and other meteorological variables. The circulation pattern approach classifies
atmospheric circulation according to type and then determines links between the
circulation type, e.g., westerly, and climate variable, for example, precipitation.

There are a number of reservations, however, which need to be considered
when using circulation patterns as part of climate change studies, including the
problems that some GCMs have in simulating the correct frequencies of weather
type and also the observed relationships between particular circulation patterns
and temperature and precipitation (see Hulme et a., 1993). Also, the relationships
between circulation patterns and, for example, temperature and precipitation, in
one area of Europe may not be applicable in another location, so for these reasons
it was decided to use the regression approach to downscaling.

At Rothamsted and Seville regression relationships were calculated between
local station data (mean temperature and precipitation; i.e., the predictands) and
grid-box scale, monthly anomalies of mean sealevel pressure (MSLP), the north-
south and east-west pressure gradients, temperature and precipitation (i.e., the pre-
dictors). The regression rel ationships were based on anomalies from the long-term
mean in order to facilitate the use of the GCM-derived changesin the equations.

The process undertaken is summarised here, but is described in more detail in
Barrow et a. (1995; 1996). Observed area-averages corresponding to the grid-box
area of UKHI and UKTR were calculated for Rothamsted and Seville for mean
temperature and precipitation. Anomaliesfrom the 1961-90 mean were then calcu-
lated for each month for each of the five predictor variables. The dataset was split
into two time periods, one of which was used to calibrate the regression equations
whilst the other wasused to verify their performance. Regressionrelationshipswere
then calculated between the local (i.e., site) and regional (i.e., grid-box) climate.
Table Il illustrates the performance of the regression models at Seville; results for
Rothamsted were reported in Barrow and Semenov (1995) and may also be found
in Barrow et al. (1995).

The next step in the procedure was the calculation of the changes in the pre-
dictor variables from UKHI and UKTR. At both Rothamsted and Seville some of
these changes, particularly mean temperature, were outside of the anomaly ranges
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Tablell
Performance of the regression model

(a) Cdlibration of the regression models for Seville based on 1961-1990 observed data. Variance
explained (%)

Jn Feb Ma Apr May Jun Ju  Aug Sep Oct Nov Dec

Temp. 938 913 845 819 849 903 854 779 940 874 956 975
Precip. 823 846 658 817 773 682 200 648 544 674 794 865

(b) Verification of the regression models for Seville using 1951-1960 observed data. Correlation
coefficients between observed data and those predicted by the regression models

Jn Feb Ma Apr May Jun Ju Aug Sep Oct Nov Dec

Temp. 095 099 082 094 087 087 08 093 097 073 096 0.98
Precip. 091 096 092 097 067 064 00 083 072 -007 064 0.89

originally used to calibrate the regression models. Despite this, it was decided to
continue the downscaling process, but to add a caveat regarding the confidence
placed in the downscaled results because of the combination of poor performance
of some of the regression models and of the grid-box changes being outside of
the calibration range in some instances. Figure 1 indicates the grid-box and down-
scaled changes in mean temperature and precipitation at Seville. In the case of
mean temperature, site changes are greater than the corresponding areal valuesin
all months except April. Changesin precipitation are not so consistent.

The downscaled changesin mean temperature and precipitation were then used
to perturb the parametersof LARS-WG (all other parameterswere kept unchanged)
and 30 years of daily data were then generated. No changes in variability were
included in these scenarios.

2.2.2. Scenarios Incorporating Climate Variability

The climate change scenarios incorporating changes in climate variability were
constructed without any downscaling of the GCM information for the two sites,
Rothamsted and Seville. This was because a robust procedure for downscaling the
variability parameterswasnot available (in the case of LARS-WG these parameters
are precipitation intensity, the duration of the wet and dry series and the standard
deviation of temperature on wet and dry days). Daily data for the appropriate grid
boxes from the control and perturbed integrations of the UKTR experiment were
used to calculate changes in precipitation intensity, duration of wet and dry spells
and temperature means and variances. These changes were then applied to the
LARSWG parameters previously calculated from the observed daily data at each
site. The perturbed parameters were used to generate 30 years of daily data. For
comparison, a corresponding scenario without variability was also constructed by



temperature change (C)

precipitation change (%)

precipitation change (%)

USE OF A STOCHASTIC WEATHER GENERATOR

Apr May Jun Jul Aug Sep Oct

— a—UKHIsite ___a... UKHIgrid g UKTR site . g - UKTR grid

300

250 |

200 ]

150 ]

100 1

50 {

[

-50 &

2
-100

—_a——UKHisite . ... .. UKHIgrid

250

200 |

150 }

100 |

50 |

X

.""Fek;"'-l\gu ~-"Ap

— g UKTRsite ...g... UKTR grid

405

Figure 1. Site (downscaled) and grid box changes at Seville. (8) Mean temperature change (°C) for
both UKHI and UKTR; (b) precipitation change (%) for UKHI, and (c) precipitation change (%) for

UKTR
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applying changesin monthly mean precipitation and monthly mean temperature to
the LARS-WG parameters.

The implications and importance of including changes in climate variability
in scenarios of climate change was then demonstrated by comparing the effect of
scenarios with and without variability on simulated grain yield by using SIRIUS
Wheat, a crop-growth simulation model for wheat (Jamieson et al., 1996).

3. Results
3.1. SCENARIOS USING REGRESSION DOWNSCALING

Tablelll illustrates the effect of downscaling on mean monthly precipitation totals
at Rothamsted. If downscalingisnot carried out, then both the UKHI andthe UKTR
scenarios indicate an overall increase in precipitation amount, although there are
decreasesin precipitation amount in anumber of individual months for the UKTR
scenario. As aresult of downscaling the number of months indicating a decrease
in precipitation amount increases for both UKHI and UKTR. In the case of UKHI,
however, there is till a general increase in precipitation amount compared to the
‘observed’ precipitation generated by LARS-WG (indicated in the column entitled
‘Base’). For UKTR, on the other hand, downscaling resultsin ageneral decreasein
precipitation amount. The values marked with asterisk in Table I11 indicate where
the downscal ed results have been changed in an opposite direction to those without
downscaling when compared with the ‘Base' precipitation.

TablelV indicatesthe effect of downscaling on precipitation amountsat Seville.
For both scenarioswithout downscaling there is ageneral decreasein precipitation
amount. Including downscaling actually results in a general increase in precipita-
tion amount for the UKTR experiment. Although the downscaled UKHI scenario
precipitation amounts are less than those of the generated base, they are almost
three times greater than for the same scenario without downscaling. Part of the
increase in precipitation amount as a result of downscaling is directly attributable
to the high July precipitation amounts predicted by the regression model. It is
worth noting that the July regression model explained only 20% of the variance
in the observed data, and hence these results should be treated with caution. If
precipitation is assumed to be zero in this month, precipitation totalsfor the UKTR
experiment are still higher than when downscaling is not included.

3.2. SCENARIOS INCORPORATING CLIMATE VARIABILITY

Incorporation of variability into climate change scenarios should not make any
difference to monthly statistics such as, for example, monthly total precipitation or
monthly mean temperature. In Table V these means are compared for the UKTR
scenarioswith and without variability for Seville. Thereis no significant difference
between monthly mean temperatures for the scenarioswith and without variability
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Tablelll

Mean monthly precipitation totals (mm) at Rothamsted with and
without downscaling. Values marked with an asterisk indicate
where downscaling has resulted in a change of the opposite sign
compared to the corresponding scenario without downscaling.
Changes in variability not included

Base Without downscaling With downscaling

UKHI  UKTR UKHI  UKTR
Jan 648 1056 727 834  60.3"
Feb 551 821 713 780 689
Mar  50.9 742 523 724 551
Apr 449 543 386 543 395
May 579 52.7 629 335 539"
Jun 629 655 655 59.5* 619"
Jul 53.5 519 476 523 481
Aug 60.0 835 404 55.7° 245
Sep 56.9 612 430 58.7 395
Oct 696 850 776 795 737
Nov 56.4 56.6 76.2 56.0© 815
Dec 69.9 981 784 1021 79.2
Table IV

Mean monthly precipitation totals (mm) at Seville with and
without downscaling. Values marked with an asterisk indicate
where downscaling has resulted in a change of the opposite sign
compared to the corresponding scenario without downscaling.
Changes in variability not included

Base Without downscaling With downscaling

UKHI  UKTR UKI UKTR
Jan 849 158 56.7 481 6838
Feb 623 107 61.4 549 804"
Mar 516 7.9 355 61.6" 55.27
Apr 418 383 411 39.7 39.0
May 365 174 7.8 11.0 5.7
Jun 132 4.5 7.6 0.0 0.0
Jul 55 23 0.0 21.0© 18.0"
Aug 4.0 0.7 23 21 2.8
Sep 114 4.3 3.6 1717 174
Oct 510 6.0 44.8 813" 813"
Nov 711 241 234 80.2° 66.0

Dec 632 236 415 429 769

407
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for al months. Results from a t-test indicate that precipitation totals were signifi-
cantly different for four months out of seven during the vegetation period for winter
wheat (January—July). Thedifferencesin thetotal sare most probably dueto theway
in which the scenarios were constructed, rather than to the weather generator (see
Barrow et al., 1996). For three of these months (May, June and July) precipitation
for both scenarioswas so low that it did not make a big differenceto total precipita-
tion over the vegetation period, 184 mm and 210 mm with and without variability,
respectively, compared to 496 mm for the base climate. For the base climate the
grainyield simulated by SIRIUS Wheat was 5.6 t/haand its coefficient of variation
(CV) was 0.24 (Table VI). According to the UKTR scenario without variability,
the grain yield does not change much (5.2 t/ha) and the CV remains about the same
(0.23). If changesin climate variability are considered theresultsare very different.
The grain yield drops to 3.9 t/ha and the CV almost doubles to 0.48. The reason
for thisis not the total amount of precipitation, but the changein precipitation dis-
tribution over the vegetation period and the prolonged dry spells. The probability
of producing yields less than 3.5 t/hais amost 50% for the UKTR scenario with
variability and only about 10% for the UK TR scenario without variability or for the
baseline climate (Figure 2). The high probability of obtaining low grain yields may
make wheat an economically unsuitable crop in Spain under this climate change
scenario. A detailed comparison of five wheat models (AFRCWHEAT2, CERES,
NWHEAT, SIRIUS and SOILN), including model sensitivity to changesin means
and variances of weather variables and model performances for a set of climate
change scenarios, are presented in Wolf et al. (1996) and Semenov et al. (1996).

4. Conclusions

A stochastic weather generator has been used in this climate change study as a
computationally inexpensivetool to construct site-specific climate change scenarios
which incorporate changes in climate means and climate variability, as indicated
by two UK Met. Office GCM experiments, UKHI and UKTR, and which are
suitable for agricultural impacts assessment. Site-specific scenarioswere produced
using regression downscaling techniques, whilst scenarios incorporating changes
in variability used only the GCM grid-box changes. The daily time-series for both
types of scenario were produced by the LARS-WG stochastic weather generator
which had been previously calibrated for a number of European sites. The GCM-
derived changes were then applied to the parameters of the weather generator for
each site and 30 years of daily data generated. This study has demonstrated that the
different methods of scenario construction produce significantly different climate
change scenarios which, in the case of Seville, imply quite different conclusions
concerning the suitability of wheat cultivation in this area of Spain as a result of
climate change.
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TableV

Mean monthly total precipitation (mm) and max-
imum temperature (°C) at Seville, Spain, for
the UKTR scenario without downscaling. Values
marked with an asterisk indicate where the hypoth-
esis of equal monthly means was rejected with 95%
confidence level

Without variability With variability

Precip. Temp. Precip. Temp.
Jan 55.5 12.0 34.4" 119
Feb 64.5 155 60.6 15.6
Mar 34.6 15.6 23.7 15.7
Apr  40.6 17.0 384 17.3
May 7.8 21.7 15.0* 21.9
Jun 7.5 28.6 3.0" 28.0
Jul 0.0 31.6 9.2¢ 315
Aug 23 325 0.3* 325
Sep 35 31.2 0.7* 31.6
Oct 48.8 24.0 30.3 24.4
Nov 236 17.2 35" 16.9
Dec 431 12.2 20.4" 12.0

Table VI

The effect of climate variability on crop yield and its coefficient of variation
(CV), assimulated by SIRIUS Wheat, for UKTR scenario at Seville, Spain.
Total precipitation and cumulative mean temperature were calculated for

the winter wheat vegetation period from January to July

Base UKTR UKTRwith
variability
Grainyield, t/ha 5.6 52 39
CV of yield 024 023 0.48
Total precipitation, January—July, mm 296 210 184
Cum. Temperature, January-July, °C 3630 4293 4323

409

The disadvantage of using regression downscalingisthat it is rather data inten-
sive; observed datafrom several sitesarerequiredin order to calculate observed are-
al means and anomalies. Construction of site-specific scenarios of climate change
may be aided by the current devel opment of Regional Climate and High Resolution
Limited Area Models (RegCMs and HRLAMS, respectively). This methodology
has been recently developed for climate change studies (Dickinson et al., 1989;
Giorgi, 1990). The basic idea of the approach is to run a RegCM with a high
grid resolution (approximately 50km) but only over alimited area of interest. The
RegCM is a physically-based model nested into the GCM and is able to repro-
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Figure2. Cumulative probability functions of grainyield assimulated by SIRIUS Wheat for the base
climate and for the UK TR scenarios with and without changes in climatic variability.

duce regional climate in more detail than the GCM itself. However, recent work
on the validation of a RegCM has shown that there may be still large differences
between model output and observed weather statistics, especialy in the case of
climate variability (Mearns et a., 1995a,b). This means that the construction of
local climate change scenarios from these models may be as problematic as from
GCMs. Hence, the need for local stochastic weather generators in climate change
studieswill remain in the near future.
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Table A-l
Comparison of observed (Obs) and generated (Gen) monthly mean precipitation (total, mm)
Rothamsted Jokioinen Seville Athens Munich
Obs Gen Obs Gen Obs Gen Obs Gen Obs Gen
Jan 62.8 64.8 358 331 609 84.9 40.7 473 52.1 58.6
Feb 534 551 244 237 795 623 477 479 54.5 52.7
Mar 503 509 253 347 464 516 447 487 53.4 59.0
Apr 480 449 315 257 534 418 303 26.9 725 716
May 522 579 352 374 209 36.5 159 16.3 99.3 108.9
Jun 56.6 629 46,5 516 142 132 98 111 135.0 1329
Jul 534 535 79.9 66.2 35 55 44 111 128.7 136.0
Aug 626 60.0 830 772 62 40 53 6.8 1123 1079
Sep 609 56.9 652 77.7 170 114 10.2 100 73.1 780
Oct 57.2 69.6 583 728 575 510 453 309 57.6 45.6
Nov 724 564 553 529 904 711 47.8 46.8 57.3 55.6
Dec 69.0 699 420 424 80.3 632 65.7 65.2 51.9 55.5
Table A-11
Comparison of observed (Obs) and generated (Gen) mean dry series length (days)
Rothamsted Jokioinen Seville Athens Munich
Obs Gen Obs Gen Obs Gen Obs Gen Obs Gen

Jan 23 29 30 33 70 58 48 53 32 30

Feb 29 30 32 38 41 67 50 6.8 32 36

Mar 3.7 33 4.2 34 7.1 6.1 5.8 6.2 4.1 4.7

Apr 32 3.6 37 46 53 77 6.4 74 3.3 45

May 3.1 3.6 48 48 10.0 8.6 7.7 105 3.0 3.0

Jun 39 34 39 46 135 120 11.4 147 25 31

Jul 36 45 34 42 334 299 339 202 26 31

Aug 36 38 33 32 66.6 47.6 455 26.7 30 29

Sep 33 3.7 2.8 3.6 251 376 16.6 40.7 34 3.8

Oct 36 43 3.0 3.0 119 310 16.3 26.8 4.7 51

Nov 3.1 34 2.8 25 7.6 9.0 81 140 5.0 59

Dec 26 31 26 3.0 76 77 52 89 31 46
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Table A-11
Comparison of observed (Obs) and generated (Gen) mean daily maximum temperature (°C)
Rothamsted Jokioinen Seville Athens Munich

Obs Gen Obs Gen Obs Gen Obs Gen Obs Gen

Jan 56 51 46 44 155 151 129 128 14 18
Feb 60 66 43 50 163 170 139 141 33 35
Mar 91 93 04 01 201 192 16.0 165 80 89
Apr 120 124 66 78 215 222 202 204 126 132
May 158 155 147 142 264 264 253 254 172 165
Jun 191 187 195 191 315 30.6 298 298 205 20.8
Jul 206 203 207 213 352 345 325 327 25 225
Aug 204 204 190 190 351 352 321 323 220 216
Sep 179 182 134 134 323 318 289 279 190 181
Oct 140 138 76 70 256 260 231 235 133 131
Nov 90 93 17 16 19.7 198 183 18.0 6.7 7.2
Dec 66 6.6 22 27 161 161 147 146 25 32

Table A-1V
Comparison of observed (Obs) and generated (Gen) mean number of dayswith Thin < 0°C
Rothamsted Jokioinen Seville Athens Munich

Obs Gen Obs Gen Obs Gen Obs Gen Obs Gen

Jan 137 188 292 308 31 39 08 06 256 284
Feb 127 144 269 275 17 12 04 06 215 240
Mar 94 98 282 303 00 01 03 03 170 193

Apr 35 42 206 23.0 00 01 00 00 70 87
May 04 05 66 53 00 00 00 00 07 08
Jun 00 00 05 04 00 00 00 00 00 00
Jul 00 00 00 00 00 00 00 00 00 00
Aug 00 00 03 03 00 00 00 00 00 00
Sep 00 01 39 38 00 00 00 00 01 03
Oct 08 08 113 147 00 00 00 00 49 45

Nov 60 69 202 26.0 04 06 00 00 141 186
Dec 110 168 276 302 29 36 01 02 232 264
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