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Abstract. Climate change scenarios with a high spatial and temporal resolution are required in the
evaluation of the effects of climate change on agricultural potential and agricultural risk. Such
scenarios should reproduce changes in mean weather characteristics as well as incorporate the
changes in climate variability indicated by the global climate model (GCM) used. Recent work
on the sensitivity of crop models and climatic extremes has clearly demonstrated that changes in
variability can have more profound effects on crop yield and on the probability of extreme weather
events than simple changes in the mean values. The construction of climate change scenarios based
on spatial regression downscaling and on the use of a local stochastic weather generator is described.
Regression downscaling translated the coarse resolution GCM grid-box predictions of climate change
to site-specific values. These values were then used to perturb the parameters of the stochastic weather
generator in order to simulate site-specific daily weather data. This approach permits the incorporation
of changes in the mean and variability of climate in a consistent and computationally inexpensive
way. The stochastic weather generator used in this study, LARS-WG, has been validated across
Europe and has been shown to perform well in the simulation of different weather statistics, including
those climatic extremes relevant to agriculture. The importance of downscaling and the incorporation
of climate variability are demonstrated at two European sites where climate change scenarios were
constructed using the UK Met. Office high resolution GCM equilibrium and transient experiments.

1. Introduction

In order to develop scenarios of climate change which are of greatest use in impacts
assessment the scenarios should be tailored to their area of application. The first
stage in this process is a sensitivity analysis of the impact model in question
to changes in the relevant climate variables. Changes in those variables which
may result in noticeable changes in the output of the impact model should be
incorporated in order to produce realistic climate change scenarios.

In most modelling studies investigating the impact of climate change on crop
production changes in only the means of the climate variables have been considered.
These changes, derived from global climate models (GCMs), were usually applied
to historical weather data to construct scenarios of climate change relevant to
agricultural applications (e.g, Kenny et al., 1993; Rosenzweig et al., 1993). Recent
work on the sensitivity of crop simulation models to changes in climate variables
has clearly shown that changes in climate variability can have a significant effect
on crop growth and associated agricultural risk (Semenov and Porter, 1994, 1995;
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Mearns et al., 1996). Extreme weather events, such as drought or hot or cold spells,
can have severe consequences for crops, and the frequency of occurrence of such
events has been shown to be better correlated with changes in the variability of
climate variables than with changes in the mean values (Katz and Brown, 1992).
As crop-growth simulation models incorporate a mixture of non-linear responses
of the crop to its environment, it is thus equally important for impact assessments
to include changes in climate variability as well as changes in mean climate.
Assessments of the impacts of climate change on agricultural production and the
appraisal of associated risks to the food supply need to bear the above in mind.

The tools which are most widely used to construct scenarios of climate change
for impacts assessment are GCMs (Giorgi and Mearns, 1991; Viner and Hulme,
1994). These complex computer models describe the climatological conditions of
the Earth at a finite number of grid points (a grid point model) or by a finite num-
ber of mathematical functions (a spectral model). The limiting factor for running
GCMs is computational power; a compromise must be reached between the spatial
resolution of the model and the computer time required to perform an experiment.
Hence, most GCMs tend to have a coarse spatial resolution which leads to approx-
imations in the model representation of meteorological variables at the regional or
local scale. These so-called ‘sub-grid scale’ processes have to be parameterised in
the model rather than solved realistically as a function of the fundamental equa-
tions. However, despite these limitations, GCMs still provide an opportunity to
examine the evolution of climate under a variety of conditions (Gates et al., 1990).
There are a number of factors which limit the direct use of their output in scenario
development. These include:

1. The ability of the control experiment to adequately simulate the larger-scale
features of the present-day climate. This is one of the reasons that the difference
between the control and perturbed integrations is used, rather than the raw data
from the integrations themselves.

2. The coarse spatial grid-output is on the scale of hundreds of kilometres rather
than the tens of kilometres needed for impacts assessment. This coarse reso-
lution also means that sub-grid scale processes, such as precipitation, are not
adequately represented and important regional topographic features are also
omitted. Hence, although GCMs may be able to simulate large-scale features
of climate well, their simulation of regional climate is considerably poorer.

In this study the output from two GCM experiments was combined with a sto-
chastic weather generator, LARS-WG, in order to produce climate change scenarios
which were suitable for use in agricultural impact assessment. The requirements of
climate change scenarios for agricultural impacts assessment may be summarised
as follows:
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� scenarios should be site-specific with daily temporal resolution;
� they should include the full set of climate variables required by the impacts

model;
� they should include changes in means and climate variability; and
� contain an adequate number of years to permit risk analysis.

This study may be considered in two sections and the results of each are detailed.
First, climate change scenarios with high spatial resolution were constructed using
regression downscaling to obtain site-specific climate data from the coarse grid-
scale GCM data. Second, changes in climate variability were incorporated into the
scenarios. In this case, the GCM data were utilised without any downscaling in the
absence of a robust method to downscale coarse resolution variability to the site-
specific scale. The basic method of producing the climate change scenarios is the
same regardless of whether downscaling or climate variability are included. Climate
change information, derived from GCMs, was used to perturb the parameters of the
stochastic weather generator, LARS-WG, which had previously been calibrated
for each site using observed daily climate data. Daily scenario data were then
generated from these perturbed parameters. Results are reported for two sites,
namely Rothamsted, UK and Seville, Spain.

2. Methodology

LARS-WG and the construction of the scenarios from the GCM data are now
described in more detail.

2.1. THE LARS-WG STOCHASTIC WEATHER GENERATOR

Models for the simulation of time-series of a suite of climate variables with certain
statistical properties have a long history. The first examples are found in the ear-
ly 1960s (e.g., Gabriel and Neumann, 1962; Bailey, 1964). Initially models were
developed to simulate a single variable, most often daily precipitation for use in
hydrological applications. From the beginning of the 1980s models which could
generate a whole suite of climate variables, stochastic weather generators, became
available (Richardson, 1981; Racsko et al, 1991). Stochastic weather generators
may be site-specific, i.e., they generate weather time-series for a single site, or spa-
tial, i.e., they generate weather for a number of locations simultaneously, reflecting
the spatial correlation of the different climate variables (Bardossy and Plate, 1991;
Hutchinson, 1995). Originally there were two main reasons for the development
of stochastic weather generators. The first was the provision of a means of simu-
lating synthetic weather time-series with certain statistical properties which were
long enough to be used in an assessment of risk in hydrological or agricultural
applications. The observed weather series normally required as input into math-
ematical models of hydrological processes or simulation models of crop growth
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are often insufficiently long to allow the estimation of the probability functions
of rare events. The second purpose was to provide the means of extending the
simulation of weather time-series to unobserved locations. For example, in order
to simulate precipitation at an unobserved location the statistical parameters of a
weather generator need to be calculated using data from the nearest meteorological
stations. These parameters are then interpolated using one or other interpolation
techniques (e.g., kriging or thin-plate smoothing splines) and time-series are then
generated using the interpolated values of the parameters (Hutchinson, 1995). It is
worth noting that a stochastic weather generator is not a predictive tool which can
be used in weather forecasting, but is a mean of generating time-series of synthetic
weather statistically ‘identical’ to the observations. Of course, it must be borne
in mind that statistical ‘identity’ depends on the number of statistics used for the
comparison.

New interest in local stochastic weather simulation has arisen as a result of
climate change studies. Output from GCMs cannot be used directly as climate
change scenarios for the reasons mentioned earlier. The weather generator, however,
can serve as a computationally inexpensive tool to produce multiple-year climate
change scenarios at the daily timescale which incorporate changes in the mean and
climate variability.

In this study the LARS-WG� stochastic weather generator has been used (Rac-
sko et al., 1991; Semenov and Porter, 1994). It generates a suite of climate variables,
namely, precipitation, maximum and minimum temperature and solar radiation.
Precipitation is considered as the primary variable and the other three variables
on a given day are conditioned on whether the day is wet or dry. The simulation
of precipitation occurrence is based on distributions of the length of continuous
sequences, or series, of wet and dry days. This is different from the approach
suggested by Bailey (1964) and re-used by Richardson (1981), which applies a
first-order Markov chain to describe the occurrence of wet and dry days. The main
limitation of the ‘Markovian’ approach is that the Markov chain has a ‘limited
memory’ of rare events and, for example, could fail to simulate accurately long
dry series at certain locations (Racsko et al., 1991). This problem was resolved by
using the series approach, where the distribution of wet and dry series is derived by
accumulating information from the observations. Consideration of long dry series
is important in agricultural studies since long droughts significantly affect crop
growth and can dramatically decrease yields. Mixed exponential distributions were
used to model the dry and wet series so that LARS-WG would be applicable over a
wide range of European locations. The amount of rain on wet days was also simu-
lated using a mixed exponential distribution. The distribution of the other weather
variables, i.e., maximum and minimum temperature and solar radiation, is based
on the current status of the wet or dry series. These variables were considered as
stochastic processes with daily means and standard deviations conditioned on the

� The LARS-WG is in a public domain and a version for IBM PC (Windows 95/NT) is available
from ftp.lars.bbsrc.ac.uk.
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Table I
Description of the European sites

Site Latitude Longitude Period of Mean annual Mean annual
(�N) (�E) record precipitation temperature

(mm) (�C)

Jokioinen, Finland 60.8 23.5 1961–90 582.4 3.6
Rothamsted, UK 51.8 -0.4 1961–90 684.5 9.2
Munich, Germany 48.1 11.6 1951–80 947.5 8.1
Seville, Spain 37.4 -5.9 1975–91 530.1 18.0
Athens, Greece 38.0 23.7 1965–90 367.7 17.6

wet and dry series. The techniques used to analyse the processes are very simi-
lar to those presented in Yevjevich (1972) and Richardson (1981). The seasonal
cycle of means and standard deviations was removed from the observed record and
the residuals approximated by a normal distribution. These residuals were used to
analyse a time correlation within each variable. Fourier series were then used to
interpolate seasonal means and standard deviations. The simulation of radiation
was independent from temperature.

The first step in the production of daily weather data using a stochastic weather
generator was the evaluation of the model parameters for each of the European
test-sites (see Table I). Three other sites were used in addition to Rothamsted and
Seville in order to ascertain how well LARS-WG performed over a wide range
of climatological conditions. Observed daily data were used to calculate the site-
specific weather parameters; these parameters were then used by LARS-WG to
generate synthetic data. Use of at least twenty years of observed daily data is
recommended in order to determine robust statistical parameters. Various statistics
were compared in order to ensure that the generator performed well at each location.
For all sites except Seville 30 years of observed daily meteorological data were
used. Only 17 years of daily weather data were available for Seville. The weather
statistics of the observed meteorological data were compared with 30 years of
generated data for each site. The following statistics were used in this comparison:
monthly mean precipitation amount, standard deviation of monthly precipitation,
mean length of the dry series, mean length of the wet series, mean number of wet
days, daily mean maximum and mean minimum temperature, standard deviation of
daily temperature, mean number of days with maximum temperature greater than
30 �C, mean number of days with minimum temperature less than 0 �C and daily
mean radiation.

Some of the results are presented in the Appendix, Tables A-I–IV. Mean daily
maximum and minimum temperature, their standard deviations and solar radiation
were simulated well by LARS-WG compared to the observations for each site. The
statistics of ‘extreme’ temperature, e.g., days with maximum temperature above
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30 �C and days with minimum temperature below 0�C, were also in good agreement
with the observed data. Monthly mean precipitation was, however, simulated less
accurately. The duration of wet and dry series was simulated relatively well for all
sites except Seville. A reason for this may be that the reduced amount of daily data
available at this site may have been insufficient to determine robust parameters
for LARS-WG. However, extremely long dry periods at Seville at the end of the
summer and the beginning of autumn were reproduced by the weather generator.
The number of wet days were reproduced well for almost all months at each site.
It is apparent that LARS-WG generally performs well in simulating the magnitude
and seasonal cycle of the main weather statistics and consequently it was used at
all European sites without any additional modifications.

2.2. CONSTRUCTION OF THE CLIMATE CHANGE SCENARIOS

Data from the UK Met. Office high resolution GCM equilibrium (UKHI; Mitchell
et al., 1990) and transient (UKTR; Murphy, 1995; Murphy and Mitchell, 1995)
experiments were used in the construction of the climate change scenarios. For
UKHI, difference fields were calculated between the control and perturbed inte-
grations. However, construction of climate change scenarios from the transient
experiment was not so straightforward. One of the problems of UKTR is climate
drift in its control integration – there is a noticeable deviation (approximately 1�C)
from the initial ten-year average over the 75-year period of the simulation. How
this drift is handled affects the way in which the scenarios are constructed and
thus there are a number of different ways of calculating the change fields, each of
which makes assumptions about the climate variability and control integration drift
(Viner and Hulme, 1993). For our purposes the change fields from UKTR were
constructed by calculating the difference between a period in the climate change
integration and the corresponding years of the control integration. This definition
is appropriate if it is assumed that both the control and climate change integrations
exhibit similar drift and long-term variability.

Data from UKTR were available only as decadal time-slices and the last decade,
model years 66–75, was selected for use. The global-mean temperature change
corresponding to this decade is 1.76 �C. Depending on assumptions concerning
future greenhouse gas emissions and climate sensitivity a range of dates as to when
this temperature change may occur can be calculated, but a best estimate is towards
the middle of the next century. The reader is referred to the latest report from
the Intergovernmental Panel on Climate Change (Houghton et al., 1996) for more
detailed discussion as to when such changes may occur. In the case of UKHI, the
equilibrium global-mean temperature change of 3.5 �C is not expected to occur
before the latter years of the next century at the earliest, if at all.
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2.2.1. Scenarios Using Regression Downscaling
In order to produce scenarios of climate change at the scale required by crop-
growth simulation models, it was necessary to ‘downscale’ the coarse resolution
GCM data to specific sites. This procedure involved the development of relation-
ships between the coarse- and local-scale data for the climate variables concerned.
There are currently a number of downscaling methodologies in use, including cir-
culation patterns (e.g., Bardossy and Plate, 1991; Matyasovszky et al., 1993; Jones
and Conway, 1995) and regression techniques (e.g., Kim et al., 1984; Wigley et
al., 1990; Karl et al., 1990; von Storch et al., 1993). Both methods use existing
instrumental databases to determine the relationships between large-scale and local
climate. Regression techniques develop statistical relationships between local sta-
tion data and grid-box scale, area-average values of say, temperature and precipita-
tion and other meteorological variables. The circulation pattern approach classifies
atmospheric circulation according to type and then determines links between the
circulation type, e.g., westerly, and climate variable, for example, precipitation.

There are a number of reservations, however, which need to be considered
when using circulation patterns as part of climate change studies, including the
problems that some GCMs have in simulating the correct frequencies of weather
type and also the observed relationships between particular circulation patterns
and temperature and precipitation (see Hulme et al., 1993). Also, the relationships
between circulation patterns and, for example, temperature and precipitation, in
one area of Europe may not be applicable in another location, so for these reasons
it was decided to use the regression approach to downscaling.

At Rothamsted and Seville regression relationships were calculated between
local station data (mean temperature and precipitation; i.e., the predictands) and
grid-box scale, monthly anomalies of mean sea level pressure (MSLP), the north-
south and east-west pressure gradients, temperature and precipitation (i.e., the pre-
dictors). The regression relationships were based on anomalies from the long-term
mean in order to facilitate the use of the GCM-derived changes in the equations.

The process undertaken is summarised here, but is described in more detail in
Barrow et al. (1995; 1996). Observed area-averages corresponding to the grid-box
area of UKHI and UKTR were calculated for Rothamsted and Seville for mean
temperature and precipitation. Anomalies from the 1961–90 mean were then calcu-
lated for each month for each of the five predictor variables. The dataset was split
into two time periods, one of which was used to calibrate the regression equations
whilst the other was used to verify their performance. Regression relationships were
then calculated between the local (i.e., site) and regional (i.e., grid-box) climate.
Table II illustrates the performance of the regression models at Seville; results for
Rothamsted were reported in Barrow and Semenov (1995) and may also be found
in Barrow et al. (1995).

The next step in the procedure was the calculation of the changes in the pre-
dictor variables from UKHI and UKTR. At both Rothamsted and Seville some of
these changes, particularly mean temperature, were outside of the anomaly ranges
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Table II
Performance of the regression model

(a) Calibration of the regression models for Seville based on 1961–1990 observed data. Variance
explained (%)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temp. 93.8 91.3 84.5 81.9 84.9 90.3 85.4 77.9 94.0 87.4 95.6 97.5
Precip. 82.3 84.6 65.8 81.7 77.3 68.2 20.0 64.8 54.4 67.4 79.4 86.5

(b) Verification of the regression models for Seville using 1951–1960 observed data. Correlation
coefficients between observed data and those predicted by the regression models

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temp. 0.95 0.99 0.82 0.94 0.87 0.87 0.85 0.93 0.97 0.73 0.96 0.98
Precip. 0.91 0.96 0.92 0.97 0.67 0.64 0.0 0.83 0.72 –0.07 0.64 0.89

originally used to calibrate the regression models. Despite this, it was decided to
continue the downscaling process, but to add a caveat regarding the confidence
placed in the downscaled results because of the combination of poor performance
of some of the regression models and of the grid-box changes being outside of
the calibration range in some instances. Figure 1 indicates the grid-box and down-
scaled changes in mean temperature and precipitation at Seville. In the case of
mean temperature, site changes are greater than the corresponding areal values in
all months except April. Changes in precipitation are not so consistent.

The downscaled changes in mean temperature and precipitation were then used
to perturb the parameters of LARS-WG (all other parameters were kept unchanged)
and 30 years of daily data were then generated. No changes in variability were
included in these scenarios.

2.2.2. Scenarios Incorporating Climate Variability
The climate change scenarios incorporating changes in climate variability were
constructed without any downscaling of the GCM information for the two sites,
Rothamsted and Seville. This was because a robust procedure for downscaling the
variability parameters was not available (in the case of LARS-WG these parameters
are precipitation intensity, the duration of the wet and dry series and the standard
deviation of temperature on wet and dry days). Daily data for the appropriate grid
boxes from the control and perturbed integrations of the UKTR experiment were
used to calculate changes in precipitation intensity, duration of wet and dry spells
and temperature means and variances. These changes were then applied to the
LARS-WG parameters previously calculated from the observed daily data at each
site. The perturbed parameters were used to generate 30 years of daily data. For
comparison, a corresponding scenario without variability was also constructed by
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Figure 1. Site (downscaled) and grid box changes at Seville. (a) Mean temperature change (�C) for
both UKHI and UKTR; (b) precipitation change (%) for UKHI, and (c) precipitation change (%) for
UKTR
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applying changes in monthly mean precipitation and monthly mean temperature to
the LARS-WG parameters.

The implications and importance of including changes in climate variability
in scenarios of climate change was then demonstrated by comparing the effect of
scenarios with and without variability on simulated grain yield by using SIRIUS
Wheat, a crop-growth simulation model for wheat (Jamieson et al., 1996).

3. Results

3.1. SCENARIOS USING REGRESSION DOWNSCALING

Table III illustrates the effect of downscaling on mean monthly precipitation totals
at Rothamsted. If downscaling is not carried out, then both the UKHI and the UKTR
scenarios indicate an overall increase in precipitation amount, although there are
decreases in precipitation amount in a number of individual months for the UKTR
scenario. As a result of downscaling the number of months indicating a decrease
in precipitation amount increases for both UKHI and UKTR. In the case of UKHI,
however, there is still a general increase in precipitation amount compared to the
‘observed’ precipitation generated by LARS-WG (indicated in the column entitled
‘Base’). For UKTR, on the other hand, downscaling results in a general decrease in
precipitation amount. The values marked with asterisk in Table III indicate where
the downscaled results have been changed in an opposite direction to those without
downscaling when compared with the ‘Base’ precipitation.

Table IV indicates the effect of downscaling on precipitation amounts at Seville.
For both scenarios without downscaling there is a general decrease in precipitation
amount. Including downscaling actually results in a general increase in precipita-
tion amount for the UKTR experiment. Although the downscaled UKHI scenario
precipitation amounts are less than those of the generated base, they are almost
three times greater than for the same scenario without downscaling. Part of the
increase in precipitation amount as a result of downscaling is directly attributable
to the high July precipitation amounts predicted by the regression model. It is
worth noting that the July regression model explained only 20% of the variance
in the observed data, and hence these results should be treated with caution. If
precipitation is assumed to be zero in this month, precipitation totals for the UKTR
experiment are still higher than when downscaling is not included.

3.2. SCENARIOS INCORPORATING CLIMATE VARIABILITY

Incorporation of variability into climate change scenarios should not make any
difference to monthly statistics such as, for example, monthly total precipitation or
monthly mean temperature. In Table V these means are compared for the UKTR
scenarios with and without variability for Seville. There is no significant difference
between monthly mean temperatures for the scenarios with and without variability
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Table III
Mean monthly precipitation totals (mm) at Rothamsted with and
without downscaling. Values marked with an asterisk indicate
where downscaling has resulted in a change of the opposite sign
compared to the corresponding scenario without downscaling.
Changes in variability not included

Base Without downscaling With downscaling
UKHI UKTR UKHI UKTR

Jan 64.8 105.6 72.7 83.4 60.3�

Feb 55.1 82.1 71.3 78.0 68.9
Mar 50.9 74.2 52.3 72.4 55.1
Apr 44.9 54.3 38.6 54.3 39.5
May 57.9 52.7 62.9 33.5 53.9�

Jun 62.9 65.5 65.5 59.5� 61.9�

Jul 53.5 51.9 47.6 52.3 48.1
Aug 60.0 83.5 40.4 55.7� 24.5
Sep 56.9 61.2 43.0 58.7 39.5
Oct 69.6 85.0 77.6 79.5 73.7
Nov 56.4 56.6 76.2 56.0� 81.5
Dec 69.9 98.1 78.4 102.1 79.2

Table IV
Mean monthly precipitation totals (mm) at Seville with and
without downscaling. Values marked with an asterisk indicate
where downscaling has resulted in a change of the opposite sign
compared to the corresponding scenario without downscaling.
Changes in variability not included

Base Without downscaling With downscaling
UKHI UKTR UKI UKTR

Jan 84.9 15.8 56.7 48.1 68.8
Feb 62.3 10.7 61.4 54.9 80.4�

Mar 51.6 7.9 35.5 61.6� 55.2�

Apr 41.8 38.3 41.1 39.7 39.0
May 36.5 17.4 7.8 11.0 5.7
Jun 13.2 4.5 7.6 0.0 0.0
Jul 5.5 2.3 0.0 21.0� 18.0�

Aug 4.0 0.7 2.3 2.1 2.8
Sep 11.4 4.3 3.6 17.1� 17.4�

Oct 51.0 6.0 44.8 81.3� 81.3�

Nov 71.1 24.1 23.4 80.2� 66.0
Dec 63.2 23.6 41.5 42.9 76.9�

clim1678.tex; 16/04/1997; 9:47; v.6; p.11



408 MIKHAIL A. SEMENOV AND ELAINE M. BARROW

for all months. Results from a t-test indicate that precipitation totals were signifi-
cantly different for four months out of seven during the vegetation period for winter
wheat (January–July). The differences in the totals are most probably due to the way
in which the scenarios were constructed, rather than to the weather generator (see
Barrow et al., 1996). For three of these months (May, June and July) precipitation
for both scenarios was so low that it did not make a big difference to total precipita-
tion over the vegetation period, 184 mm and 210 mm with and without variability,
respectively, compared to 496 mm for the base climate. For the base climate the
grain yield simulated by SIRIUS Wheat was 5.6 t/ha and its coefficient of variation
(CV) was 0.24 (Table VI). According to the UKTR scenario without variability,
the grain yield does not change much (5.2 t/ha) and the CV remains about the same
(0.23). If changes in climate variability are considered the results are very different.
The grain yield drops to 3.9 t/ha and the CV almost doubles to 0.48. The reason
for this is not the total amount of precipitation, but the change in precipitation dis-
tribution over the vegetation period and the prolonged dry spells. The probability
of producing yields less than 3.5 t/ha is almost 50% for the UKTR scenario with
variability and only about 10% for the UKTR scenario without variability or for the
baseline climate (Figure 2). The high probability of obtaining low grain yields may
make wheat an economically unsuitable crop in Spain under this climate change
scenario. A detailed comparison of five wheat models (AFRCWHEAT2, CERES,
NWHEAT, SIRIUS and SOILN), including model sensitivity to changes in means
and variances of weather variables and model performances for a set of climate
change scenarios, are presented in Wolf et al. (1996) and Semenov et al. (1996).

4. Conclusions

A stochastic weather generator has been used in this climate change study as a
computationally inexpensive tool to construct site-specific climate change scenarios
which incorporate changes in climate means and climate variability, as indicated
by two UK Met. Office GCM experiments, UKHI and UKTR, and which are
suitable for agricultural impacts assessment. Site-specific scenarios were produced
using regression downscaling techniques, whilst scenarios incorporating changes
in variability used only the GCM grid-box changes. The daily time-series for both
types of scenario were produced by the LARS-WG stochastic weather generator
which had been previously calibrated for a number of European sites. The GCM-
derived changes were then applied to the parameters of the weather generator for
each site and 30 years of daily data generated. This study has demonstrated that the
different methods of scenario construction produce significantly different climate
change scenarios which, in the case of Seville, imply quite different conclusions
concerning the suitability of wheat cultivation in this area of Spain as a result of
climate change.
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Table V
Mean monthly total precipitation (mm) and max-
imum temperature (�C) at Seville, Spain, for
the UKTR scenario without downscaling. Values
marked with an asterisk indicate where the hypoth-
esis of equal monthly means was rejected with 95%
confidence level

Without variability With variability
Precip. Temp. Precip. Temp.

Jan 55.5 12.0 34.4� 11.9
Feb 64.5 15.5 60.6 15.6
Mar 34.6 15.6 23.7 15.7
Apr 40.6 17.0 38.4 17.3
May 7.8 21.7 15.0� 21.9
Jun 7.5 28.6 3.0� 28.0
Jul 0.0 31.6 9.2� 31.5
Aug 2.3 32.5 0.3� 32.5
Sep 3.5 31.2 0.7� 31.6
Oct 48.8 24.0 30.3 24.4
Nov 23.6 17.2 3.5� 16.9
Dec 43.1 12.2 20.4� 12.0

Table VI
The effect of climate variability on crop yield and its coefficient of variation
(CV), as simulated by SIRIUS Wheat, for UKTR scenario at Seville, Spain.
Total precipitation and cumulative mean temperature were calculated for
the winter wheat vegetation period from January to July

Base UKTR UKTR with
variability

Grain yield, t/ha 5.6 5.2 3.9
CV of yield 0.24 0.23 0.48

Total precipitation, January–July, mm 296 210 184
Cum. Temperature, January–July, �C 3630 4293 4323

The disadvantage of using regression downscaling is that it is rather data inten-
sive; observed data from several sites are required in order to calculate observed are-
al means and anomalies. Construction of site-specific scenarios of climate change
may be aided by the current development of Regional Climate and High Resolution
Limited Area Models (RegCMs and HRLAMs, respectively). This methodology
has been recently developed for climate change studies (Dickinson et al., 1989;
Giorgi, 1990). The basic idea of the approach is to run a RegCM with a high
grid resolution (approximately 50km) but only over a limited area of interest. The
RegCM is a physically-based model nested into the GCM and is able to repro-
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Figure 2. Cumulative probability functions of grain yield as simulated by SIRIUS Wheat for the base
climate and for the UKTR scenarios with and without changes in climatic variability.

duce regional climate in more detail than the GCM itself. However, recent work
on the validation of a RegCM has shown that there may be still large differences
between model output and observed weather statistics, especially in the case of
climate variability (Mearns et al., 1995a,b). This means that the construction of
local climate change scenarios from these models may be as problematic as from
GCMs. Hence, the need for local stochastic weather generators in climate change
studies will remain in the near future.
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Appendix

Table A-I
Comparison of observed (Obs) and generated (Gen) monthly mean precipitation (total, mm)

Rothamsted Jokioinen Seville Athens Munich
Obs Gen Obs Gen Obs Gen Obs Gen Obs Gen

Jan 62.8 64.8 35.8 33.1 60.9 84.9 40.7 47.3 52.1 58.6
Feb 53.4 55.1 24.4 23.7 79.5 62.3 47.7 47.9 54.5 52.7
Mar 50.3 50.9 25.3 34.7 46.4 51.6 44.7 48.7 53.4 59.0
Apr 48.0 44.9 31.5 25.7 53.4 41.8 30.3 26.9 72.5 71.6
May 52.2 57.9 35.2 37.4 20.9 36.5 15.9 16.3 99.3 108.9
Jun 56.6 62.9 46.5 51.6 14.2 13.2 9.8 11.1 135.0 132.9
Jul 53.4 53.5 79.9 66.2 3.5 5.5 4.4 11.1 128.7 136.0
Aug 62.6 60.0 83.0 77.2 6.2 4.0 5.3 6.8 112.3 107.9
Sep 60.9 56.9 65.2 77.7 17.0 11.4 10.2 10.0 73.1 78.0
Oct 57.2 69.6 58.3 72.8 57.5 51.0 45.3 30.9 57.6 45.6
Nov 72.4 56.4 55.3 52.9 90.4 71.1 47.8 46.8 57.3 55.6
Dec 69.0 69.9 42.0 42.4 80.3 63.2 65.7 65.2 51.9 55.5

Table A-II
Comparison of observed (Obs) and generated (Gen) mean dry series length (days)

Rothamsted Jokioinen Seville Athens Munich
Obs Gen Obs Gen Obs Gen Obs Gen Obs Gen

Jan 2.3 2.9 3.0 3.3 7.0 5.8 4.8 5.3 3.2 3.0
Feb 2.9 3.0 3.2 3.8 4.1 6.7 5.0 6.8 3.2 3.6
Mar 3.7 3.3 4.2 3.4 7.1 6.1 5.8 6.2 4.1 4.7
Apr 3.2 3.6 3.7 4.6 5.3 7.7 6.4 7.4 3.3 4.5
May 3.1 3.6 4.8 4.8 10.0 8.6 7.7 10.5 3.0 3.0
Jun 3.9 3.4 3.9 4.6 13.5 12.0 11.4 14.7 2.5 3.1
Jul 3.6 4.5 3.4 4.2 33.4 29.9 33.9 20.2 2.6 3.1
Aug 3.6 3.8 3.3 3.2 66.6 47.6 45.5 26.7 3.0 2.9
Sep 3.3 3.7 2.8 3.6 25.1 37.6 16.6 40.7 3.4 3.8
Oct 3.6 4.3 3.0 3.0 11.9 31.0 16.3 26.8 4.7 5.1
Nov 3.1 3.4 2.8 2.5 7.6 9.0 8.1 14.0 5.0 5.9
Dec 2.6 3.1 2.6 3.0 7.6 7.7 5.2 8.9 3.1 4.6
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Table A-III
Comparison of observed (Obs) and generated (Gen) mean daily maximum temperature (�C)

Rothamsted Jokioinen Seville Athens Munich
Obs Gen Obs Gen Obs Gen Obs Gen Obs Gen

Jan 5.6 5.1 –4.6 –4.4 15.5 15.1 12.9 12.8 1.4 1.8
Feb 6.0 6.6 –4.3 –5.0 16.3 17.0 13.9 14.1 3.3 3.5
Mar 9.1 9.3 0.4 0.1 20.1 19.2 16.0 16.5 8.0 8.9
Apr 12.0 12.4 6.6 7.8 21.5 22.2 20.2 20.4 12.6 13.2
May 15.8 15.5 14.7 14.2 26.4 26.4 25.3 25.4 17.2 16.5
Jun 19.1 18.7 19.5 19.1 31.5 30.6 29.8 29.8 20.5 20.8
Jul 20.6 20.3 20.7 21.3 35.2 34.5 32.5 32.7 22.5 22.5
Aug 20.4 20.4 19.0 19.0 35.1 35.2 32.1 32.3 22.0 21.6
Sep 17.9 18.2 13.4 13.4 32.3 31.8 28.9 27.9 19.0 18.1
Oct 14.0 13.8 7.6 7.0 25.6 26.0 23.1 23.5 13.3 13.1
Nov 9.0 9.3 1.7 1.6 19.7 19.8 18.3 18.0 6.7 7.2
Dec 6.6 6.6 –2.2 –2.7 16.1 16.1 14.7 14.6 2.5 3.2

Table A-IV
Comparison of observed (Obs) and generated (Gen) mean number of days with Tmin < 0 �C

Rothamsted Jokioinen Seville Athens Munich
Obs Gen Obs Gen Obs Gen Obs Gen Obs Gen

Jan 13.7 18.8 29.2 30.8 3.1 3.9 0.8 0.6 25.6 28.4
Feb 12.7 14.4 26.9 27.5 1.7 1.2 0.4 0.6 21.5 24.0
Mar 9.4 9.8 28.2 30.3 0.0 0.1 0.3 0.3 17.0 19.3
Apr 3.5 4.2 20.6 23.0 0.0 0.1 0.0 0.0 7.0 8.7
May 0.4 0.5 6.6 5.3 0.0 0.0 0.0 0.0 0.7 0.8
Jun 0.0 0.0 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Jul 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aug 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0
Sep 0.0 0.1 3.9 3.8 0.0 0.0 0.0 0.0 0.1 0.3
Oct 0.8 0.8 11.3 14.7 0.0 0.0 0.0 0.0 4.9 4.5
Nov 6.0 6.9 20.2 26.0 0.4 0.6 0.0 0.0 14.1 18.6
Dec 11.0 16.8 27.6 30.2 2.9 3.6 0.1 0.2 23.2 26.4
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