## ENCAPSULATED USE OF COAL BOTTOM ASH IN CONCRETE

Research by

Professor T. Ramjeawon (Principal Investigator)

Department of Civil Engineering, University of Mauritius

&

A.S Cadersa (Co-Investigator) Department of Civil Engineering, University of Mauritius

October 2012

# **Outline of Presentation**

- Problem statement
- Aim and Objectives
- Methodology
- Results
- Outcomes

# Problem Statement (1)

- Coal -single largest fuel source for the generation of electricity worldwide- 38% of yearly electricity generation.
- Environmental impacts associated with disposal of CCBP (coal ash).
- In Mauritius, year 2008- 45% of the total energy generated over 105,000 tonnes of coal ash.
- With prospective setting up of coal power plants, quantity of coal & thus coal ash will be greater.

# Problem Statement (2)

- Leveling of cane field tracks /dumped on private land / a little for agricultural purposes.
- Environmental problem-Possible ground water contamination due to leachate of heavy metals (e.g Hg, Ar, Cd, Zn, Ba)
- Recognition of need for sound management- in line with MID concept.
- Identify applications requiring high volume of coal ash e.g in road construction and cement/concrete production.
- Investigate technical feasibility & assess environmental impacts.

# Aim & Objectives

- Aim investigate the encapsulated use of coal bottom ash in concrete as controlled low strength material and assess the environmental impacts of that application
- Specific objectives
  - Determine the physical and chemical properties of coal bottom ash
  - Assess the main engineering properties of the concrete e.g compressive strength and elastic modulus
  - Assess the environmental impacts of the concrete with respect to leachability of heavy metals
  - Provide specifications and recommendations for the safe encapsulated applications of coal bottom ash.

## Literature Review (1)

- Coal Ash
  - incombustible materials left after combustion of coal in combustors.
  - Fly ash (70%-90%) and bottom ash (10-30%).
  - Fly ash --spherical particles(1 um- 1 mm in size).
  - Bottom ash Angular in shape. (75um -25 mm).
  - Contains heavy metals.

| Sample<br>No. | Lead<br>(mg/kg) | Nickel<br>(mg/kg) | Cadmium<br>(mg/kg) | Chromium<br>(mg/kg) | Copper<br>(mg/kg) | Zinc<br>(mg/kg) | Cobalt<br>(mg/kg) |  |
|---------------|-----------------|-------------------|--------------------|---------------------|-------------------|-----------------|-------------------|--|
| 1             | 77.0            | 83.0              | ND                 | 30.7                | 73.5              | 308.3           | 31.7              |  |
| 2             | 9.0             | 77.3              | ND                 | 189.6               | 73.2              | 222.0           | 29.1              |  |

## Literature Review (2)

- Encapsulated uses -partial substitute for cement (blending with cement), aggregates for concrete products (low cost material for projects requiring backfill, concrete surrounds, parking areas, erosion control), mineral filler in asphalt and pavements.
- Un-encapsulated uses of coal ash -fills below roads/buildings/pavements/parking areas, soil stabilization and material for pipe bedding.
- Coal ash contains heavy metals. Though encapsulated applications do not pose significant risks, both require leachability tests and hydrogeologic evaluation to ensure ground water protection.

|                       | Zn   | Cu   | Hg  | Ва     | Cd  | Cr  | Ni | Pb  |
|-----------------------|------|------|-----|--------|-----|-----|----|-----|
|                       |      |      |     |        |     |     |    |     |
| Israel                | 173  | 7.8  | 0.3 | 735    | 0.4 | 8.8 | 30 | 3.8 |
|                       |      |      |     |        |     |     |    |     |
| Drinking Water        |      |      |     |        | _   |     |    |     |
| Stds-Israel           | 5000 | 1400 | 1   | 1000   | 5   | 50  | 50 | 10  |
|                       |      |      |     |        |     |     |    |     |
| Mauritius             | 32   | ND   | ND  | 7598   | ND  | 8.3 | 11 | ND  |
|                       |      |      |     |        |     |     |    |     |
| <b>Drinking Water</b> |      |      |     |        |     |     |    |     |
| Stds-Mauritius        | 3000 | 1000 | 1   | No Std | 3   | 50  | 20 | 10  |

Concentrations of Trace Elements in the Extraction Solutions of Coal Bottom Ash in Israel and Mauritius (parts per billion)

# Methodology

- Grade 30 concrete mix.
- A continuous grading established using the DOE Method
- Natural aggregates were substituted Bottom Ash by substituting the sand (0/4mm) and coarse aggregates 6/10mm.
- 5 cubes for each mix-1@7d, 1@28d, 3 for leachability test
- Leachability test as per BS EN 12457-1:2002
- Results to be compared with BS 6920:2000-Materials in Contact with Drinking Water and Drinking Water Standards in Mauritius

# Schedule of Activities

|                    |    | September October |    |    | ober |    | November |    |    |     | December |     |     |     |
|--------------------|----|-------------------|----|----|------|----|----------|----|----|-----|----------|-----|-----|-----|
| Week               | W1 | W2                | W3 | W4 | W5   | W6 | W7       | W8 | W9 | W10 | W11      | W12 | W13 | W14 |
| Start Project      |    |                   |    |    |      |    |          |    |    |     |          |     |     |     |
| Litterature Review |    |                   |    |    |      |    |          |    |    |     |          |     |     |     |
| Define Methodology |    |                   |    |    |      |    |          |    |    |     |          |     |     |     |
| Testing            |    |                   |    |    |      |    |          |    |    |     |          |     |     |     |
| Analysis           |    |                   |    |    |      |    |          |    |    |     |          |     |     |     |
| Write Up           |    |                   |    |    |      |    |          |    |    |     |          |     |     |     |
| Submission         |    |                   |    |    |      |    |          |    |    |     |          |     |     |     |

### Results

#### 1. Grading Curve-Bottom Ash



### 2. Compressive Strength

| Mix Reference | Cement<br>Content | % Replacement<br>of Natural<br>Aggregates by<br>Bottom Ash | 7days<br>strength<br>(MPa) | 28 days strength<br>(MPa) |
|---------------|-------------------|------------------------------------------------------------|----------------------------|---------------------------|
| Grade 30-CM   | 350 kg            | 0                                                          | 28                         | Pending                   |
| Grade 30-CM1  | 350 kg            | 7                                                          | 24                         | Pending                   |
| Grade 30-CM2  | 350 kg            | 10                                                         | 21                         | Pending                   |
| Grade 30-CM3  | 350 kg            | 16.5                                                       | 19                         | Pending                   |

## Outcomes

- Scientific method to the sound management of coal ash in Mauritius.
- Develop research expertise for the use of secondary materials in the local construction industry.
- Provide specifications for the safe use of coal ash in concrete production.
- Valuable for future government policy decisions such as "Green Procurement".
- It is expected that utilisation of coal ash will result in
  - decrease in the demand for landfill space and therefore lower maintenance costs.
  - Conservation of natural resources (less extraction of raw materials for aggregates).
  - A cleaner and safer environment.(less gaseous emissions associated with extraction and grinding processes).
  - Economic savings for end users.