Assessment of vulnerabilities and adaptive responses

Sreeja Nair Centre for Global Environmental Research

teri

Awareness Week on Climate Change, University of Mauritius, 13-15 July 2011

Overview

- Impacts of changes in climate variables
- Assessments of vulnerability
- Adaptation vs. Good development
- Policymaking under uncertainty
- Recommendations and concluding thoughts

Global mean temperatures are rising faster with time

Projected changes in climate globally

By 2100:

- Global average surface temperature is projected to increase by 1.8 to 4°C
- The global mean sea level is projected to rise by 0.18 to 0.59 meters
- Very likely that hot extremes, heat waves, and heavy precipitation events will continue to become more frequent
- Likely that future tropical cyclones will become more intense, with larger peak wind speeds and more heavy precipitation

IPCC Summary for Policy Makers- WG1, AR4, 2007

Key impacts as a function of increasing global average temperature

IN TEN	Hundreds of millions of people exposed to increase water stress							
ECOSYSTEMS	Increased coral bleachin Increasing species range	Up to 30% increasing mg — Most corals blead shifts and wildfire risk	6 of species at grisk of extinction thed Widespr Terrestrial bios ~15% Ecosystem char overturning cir	ead coral mortality phere tends towa - ~40% of ecosys nges due to wea culation	Significant ¹ extine around the glob rd a net carbon source tems affected kening of the meridior	ctions – be as: nal – –		
FOOD	Complex, localised negative impacts on small holders, subsistence farmers and fishersProductivity of all cereals decreases in low latitudesProductivity of all cereals decreases in low latitudesCereal productivity to increase at mid- to high latitudesCereal productivity decrease in some regions							
COASTS	Increased damage fro	om floods and storms	Millions more peo coastal flooding ea	About 30% global coast wetlands lo ple could experie ach year _	of tal st ² nce	+ +		
HEALTH	Increasing Increased morbidity Changed distributio	burden from malnutriti and mortality from he n of some disease vect	ion, diarhoeal, cardi at waves, floods, and ors	o-respiratory, and d droughts — Substantial burd	infectious diseases			
(1 Johal maan annual t	2 omnoratura chan	3 an relative to 1	4			
	3		¹ Sig ² Ba	ge relative to the gnificant is defined used on average rate	here as more than 40%.	n/vear fro		

IPCC, 2007

What causes the sea level to change ?

Terrestrial water storage, extraction of groundwater, building of reservoirs, changes in runoff, and seepage into aquifers

Surface and deep ocean circulation changes, storm surges

Subsidence in river delta region, land movements, and tectonic displacements

As the ocean warms, the water expands

Exchange of the water stored on land by glaciers and ice sheets with ocean water

Source: IPCC, 2001

No either or: Mitigate AND adapt

CO₂ concentration, temperature, and sea level continue to rise long after emissions are reduced

Magnitude of response

Building the case for adaptation

Responding to Structured and unstructured problems

Agreement on perception about the problem

Unstructured problems are characterized by uncertainty and difference in perception about the problem, its cause and solution; boundaries of the problem are nebulous.

No

Yes

Certainty about knowledge

No	Yes	Yes	
Unstructured	Moderately		
problem	structured problem		
Moderately	Structured problem		
structured prob	lem		

Hisschemoller and Hoppe, 1989

Understanding Uncertainty

Adaptive responses may be elicited across a continuum of uncertainty: moving from

Determinism, TO Complete ignorance

Level 1	Level 2	Level 3	Level 4
		Deep Uncertainty	
A clear enough	Alternate futures	A multiplicity of	Unknown future
future	(with probabilities)	plausible futures	
		Ď.	

Walker et al 2010

Mis-interpretation Vs. Misrepresentation It's a Fan! It's a Wall! It's It's a DUD a Spear! Rope! It's It's a a Snake! Tree!

http://www.nature.com/ki/journal/v62/n5/images/4493262f1b.gif

Assessments of vulnerability

What defines vulnerability?

"the degree to which a system is susceptible to, and unable to cope with, adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate change and variation to which a system is exposed, its sensitivity, and its adaptive capacity" (McCarthy et al., 2001).

Challenges for vulnerability assessments

- Often sectoral, comparability across sectors missing
- Limitations in addressing scale issues
- Limitations in addressing dynamism of vulnerability
 - How and where to establish the baseline?
- Need to isolate the 'climate signal'
 - Consider spread and 'extremes'
 - Lack of time-series data especially in sectors such as health
- Scale mismatch
 - Timescale of projected impacts vs. policy planning process
- Data or Information barrier?
 - Lack of awareness, lack of relevant information, usability issuesa strong case for capacity building of end-users

Methodologies for vulnerability assessments

- Top-down methods (global or regional scale, typically address impacts and vulnerability due to future climate change)
- 2. Bottom-up methods (Local scale and assessments typically address current vulnerability)

Case study 1: Macro and micro assessments

Impacts of climate change and globalization on Indian agriculture

Adaptive capacity

Biophysical vulnerability

- Soil degradation and cover
- Groundwater availability

Social vulnerability

- Agricultural workers and labourers
- Literacy
- Gender discrimination
- Child mortality and fertility

Technological vulnerability

- Irrigation
- Infrastructure

Vulnerability profiles

Regions with highest climate sensitivity and exposure are not necessarily the most vulnerable

Assessment of vulnerability of Indian agriculture to 'double exposure' (climate change and globalization)- a case study (Source: TERI, 2003)

Assessment using Regional Climate and Impact Assessment Model over West Bengal -Ongoing

Regional Climate Model projections over the West Bengal region using PRECIS for 50km x 50km scale

Impact Assessments of sea level rise, storm surge, water, agriculture and health sectors

Determination of hotspots and multi-hazard mapping in GIS platform including socioeconomic projections

Determination of Storm surge impact over the West Bengal coast

- ADCIRC (ADvanced CIRCulation) is a finite element hydrodynamic model that solves the generalized form of the wave continuity equation for elevation and the non-conservative momentum equation for the velocity field.
- The model is used for
 - Predicting surges due to hurricanes and other storms
 - Producing tidal charts for coastal areas
 - Studying general circulation patterns in near-shore and oceanic waters.
- The model was originally developed for the U.S. Army Corps of Engineers over 18 years ago, by R. Luettich and J.J. Westerink, and has been modified by many others since then

Adaptation Vs. Good Development

Adaptation- development continuum

Case study 3: Climate risk screening

Climate risk assessment as a tool/approach for reducing climatic risks to developmental objectives and integrating adaptation options within developmental programmes at the national and subnational levels

and risks from climate chang and disasters

Climate-risk screening of projects

- Criteria for climate risk screening: comparison of scenarios
 - No programme scenario: without interventions
 - Programme scenario: partial risk reduction due to programme implementation
 - Programme plus scenario: risk reduction with additional components added within the present programme portfolio

Source: Tanner et al, 2007

Policymaking under uncertainty

International Institute for Sustainable Development

> CREATING ADAPTIVE POLICIES

A GUIDE FOR POLICY-MAKING IN AN UNCERTAIN WORLD

DARREN SWA^{EDIEDBY} SURUCHI BHADWAL

The Energy and Resources Institute

ATTENTION:

NO FISHING

PENALTIES APPLY

ADAPTIVE POLICIES

Guidance for Designing Policies in Today's Complex, Dynamic and Uncertain World

Adaptive Policy

Ability of policy to adapt to **anticipated** conditions Ability of policy to adapt to **unanticipated** conditions

(based on a good understanding of cause and effect)

(based on a good understanding of system dynamics and complexity)

Adaptive policies are 'designed to function more effectively under complex, dynamic and uncertain conditions'.

Swanson and Bhadwal, Creating Adaptive Policies: IISD-IDRC-TERI 2009

Recommendations

- Monitoring of changes in sea level to be done to assess relative sea level change at regional and local scale
- Enhance skills for climate (mean air temperature, tropical cyclones, wind direction and strength, sea surface temperatures).
- Expand coverage of observational networks.
- Integrated impacts assessments- between sectors, integrating changes in socio-economic conditions with climate and impact projections.
- Convergence of traditional knowledge and modern technologies, along with technology transfer and skill building is required
- Capacity building for resilience planning and strengthening adaptive capacities
- Enhanced regional cooperation and strengthening existing networks IPCC 2007

Some concluding thoughts

- Establish baseline for M& E of adaptation efforts
- Engaging the civil society: "Fatal impression" 'it is a global problem to be solved at global level'need to engage the civil society
- Communication of climate risks
- Limits to adaptation
- Synergies: across research domains, from research to policy, from top-down to bottom-up
- For what we can change......Better management of our resources and Sustainable lifestyles
- For what we cannot change......Enhance coping abilities (enhance asset base- in terms of development and knowledge/ skills) for better preparedness

Thank you for your attention

sreejan@teri.res.in