COASTAL PROTECTION, LANDSCAPING AND INFRASTRUCTURAL WORKS IN MAURITIUS

CASE NOYALE SITE
ENVIRONMENTAL IMPACT ASSESSMENT REPORT

CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1</td>
<td>General</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Need for EIA</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2</td>
<td>The Project</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2.1</td>
<td>General</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Coastal Erosion</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Project Background</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Previous Studies</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Actions taken by MSSESD</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3</td>
<td>The Proponent and Project Team</td>
<td>1-3</td>
</tr>
<tr>
<td>1.3.1</td>
<td>The Proponent</td>
<td>1-3</td>
</tr>
<tr>
<td>1.3.2</td>
<td>The Project Team</td>
<td>1-3</td>
</tr>
<tr>
<td>1.4</td>
<td>Project Implementation Timeframe</td>
<td>1-4</td>
</tr>
<tr>
<td>1.5</td>
<td>Method of Assessment</td>
<td>1-4</td>
</tr>
<tr>
<td>1.5.1</td>
<td>General</td>
<td>1-4</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Phases of Assessment</td>
<td>1-4</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Scoping</td>
<td>1-4</td>
</tr>
<tr>
<td>1.6</td>
<td>Structure of Report</td>
<td>1-5</td>
</tr>
<tr>
<td>2</td>
<td>LEGAL FRAMEWORK</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2</td>
<td>Legal Framework</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Environment Protection Act, 2002</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Regulations</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3</td>
<td>Policies, Planning Schemes and Guidelines</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.1</td>
<td>General</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.2</td>
<td>National Environment Policy</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.3</td>
<td>National Development Strategy</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Environmentally Sensitive Areas (ESA)</td>
<td>2-3</td>
</tr>
</tbody>
</table>
3.11.1 Water Levels 3-16
3.11.2 Cyclones 3-18
3.11.3 Wind 3-20
3.11.4 Waves and Surges 3-22
3.12 Hydrodynamic Modelling for Case Noyale Site 3-22
3.13 Historical/Heritage Features 3-23
3.14 Water Quality 3-23
3.15 Landscape and Aesthetics 3-24
3.16 Air Quality 3-24
3.17 Traffic 3-25
3.18 Noise 3-25
3.19 Socio-economic Activities 3-25
3.19.1 Tourist Industry 3-25
3.19.2 Fisheries 3-25
3.19.3 Other Activities 3-25
3.20 Consultation with Stakeholders 3-26
3.20.1 Ministries and Authorities 3-26
3.20.2 Public Consultation 3-26

4 PROJECT ALTERNATIVES AND JUSTIFICATION 4-1
4.1 General 4-1
4.2 Functional Requirements (Client’s Requirements and ToR) 4-2
4.2.1 MSSES D Requirements 4-2
4.2.2 Stakeholder Requirements 4-2
4.2.3 Protection against Erosion 4-2
4.3 Design Parameters dictated by Met-ocean Conditions 4-2
4.3.1 Extreme Still Water Levels 4-2
4.3.2 Extreme Wave Heights 4-4
4.3.3 Wave Directions 4-4
4.3.4 Overtopping Discharge 4-4
4.3.5 Drainage 4-4
4.3.6 Design Working Life 4-4
4.3.7 Damage Levels 4-5
4.3.8 Reference Standards and Publications 4-5
4.3.9 Design Criteria 4-5
4.3.10 Design Method 4-5
4.3.11 Protection against Erosion 4-6
4.4 Maximum Crest Level vis-a-vis Visual Impact 4-6
4.5 Other Requirements 4-6
4.5.1 Preliminary Stakeholder Consultation 4-6
4.5.2 Road Widening 4-6
4.5.3 Verge 4-7
4.5.4 Bus-stops and Vehicle Parking 4-7
4.5.5 Pedestrian Footway 4-7
4.5.6 Filling to Sea-side of Road 4-7
4.5.7 Fishery 4-7
4.5.8 Shore Access 4-7
4.6 Construction Aspects 4-7
4.6.1 External Access Road 4-7
4.6.2 Contractor’s Work yard 4-8
4.6.3 Access to Works along the shore 4-8
4.7 Project Alternatives 4-8
4.7.1 General 4-8
4.7.2 Option 1: Minimal Scheme with planted Vegetation only 4-8
4.7.3 Option 2: Gravel Beach (Flexible Revetment) 4-8
4.7.4 Option 3: Rock Armoured Embankment 4-9
4.8 Approved Scheme 4-9
4.9 Clearances 4-10

5 PROJECT DESCRIPTION 5-1
5.1 General 5-1
5.2 Proposed Works and Site Layout 5-1
5.2.1 Extent of site 5-1
5.2.2 Site Layout 5-1
5.2.3 Principal Work Items 5-1
5.2.4 Revetment Cross-section 5-1
5.3 Mass Concrete Wall and Walkways 5-2
5.4 Gravel Beach and Groynes 5-2
5.5 Access to Gravel Beach 5-2
5.6 Landscaping 5-3
5.7 Drainage 5-3
5.8 Monitoring Beacons 5-3
5.9 Construction Methodology 5-3

6 IMPACT IDENTIFICATION, ASSESSMENT AND MITIGATION 6-1
6.1 Methodology 6-1
6.2 Construction Phase 6-3
6.2.1 General 6-3
6.2.2 Geology and Geomorphology 6-3
6.2.3 Water Quality 6-4
6.2.4 Biodiversity 6-5
6.2.5 Air Quality 6-6
6.2.6 Traffic 6-7
6.2.7 Socio-economic 6-7
6.2.8 Noise 6-8
6.2.9 Health and Safety 6-8

6.3 Operation/Utilisation Phase 6-9
6.3.1 General 6-9
6.3.2 Geomorphology and Hydrodynamic Impacts 6-9
6.3.3 Landscape and Aesthetics 6-11
6.3.4 Socio-economic Impact 6-11
6.3.5 Significance of Impacts during Operation Phase 6-11

6.4 Maintenance as a Mitigation Measure 6-11

7 ENVIRONMENTAL MONITORING PLAN 7-1

7.1 Monitoring during Construction Phase 7-1
7.1.1 Air Quality 7-1
7.1.2 Noise 7-1
7.1.3 Water Quality 7-2
7.1.4 Solid Waste 7-2
7.1.5 Traffic 7-2
7.1.6 Infrastructure 7-3
7.1.7 Health and Safety 7-3

7.2 Monitoring during Operation Phase 7-3

8 RECOMMENDATION AND CONCLUSION 8-1
List of Appendices:

Appendix A: Laboratory Test Results for Water and Sediment Samples
Appendix B: Biodiversity Survey Report
Appendix C: Drawings

List of Drawings:

<table>
<thead>
<tr>
<th>Drawing Title</th>
<th>Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context Map</td>
<td>M190/CN/EV/01</td>
</tr>
<tr>
<td>Sampling Location</td>
<td>M190/CN/EV/02</td>
</tr>
<tr>
<td>Location Plan</td>
<td>M190/CN/DD/01</td>
</tr>
<tr>
<td>Topographic Map</td>
<td>M190/CN/DD/02</td>
</tr>
<tr>
<td>Plan and Profile of Coast Road</td>
<td>M190/CN/DD/03</td>
</tr>
<tr>
<td>Proposed Layout Plan</td>
<td>M190/CN/DD/04</td>
</tr>
<tr>
<td>Typical Cross Sections</td>
<td>M190/CN/DD/05</td>
</tr>
<tr>
<td>Section across Groyne</td>
<td>M190/CN/DD/06</td>
</tr>
<tr>
<td>Typical Cross Section of Mass Concrete Seawall</td>
<td>M190/CN/DD/07</td>
</tr>
</tbody>
</table>

List of Figures

Figure 3-1: Case Noyale Site and Environs ... 3-1
Figure 3-2: Site Limits ... 3-4
Figure 3-3: Culvert and Swale ... 3-5
Figure 3-4: Site Waterfront ... 3-6
Figure 3-5: Erosion along Site Waterfront ... 3-7
Figure 3-6: Fish Landing Station North of the site ... 3-8
Figure 3-7: Coast Road (B9) ... 3-8
Figure 3-8: Site Geology ... 3-10
Figure 3-9: Historical aerial image (1975) ... 3-11
Figure 3-10: Direction of mean wave energy flux (top) and wave rose (bottom) 3-12
Figure 3-11: Historical imagery of eroded escarpment along site (April, 2014) 3-13
Figure 3-12 Raw water level data measures at Port Louis (Caldwell, et al, 2015), shown relative to Mean Sea Level (MSL) .. 3-14
Figure 3-13 Water level data measured at Port Louis (Caldwell, et al., 2015). The data shown was detrended, with a mean level equal to the measured mean level at 1995, calculated as the average over 1986-2005 .. 3-15
Figure 3-14 Measured Water Level at Port Louis with SLR Trend Lines 3-16
Figure 3-15 Extract from Chapter 13: Sea level change in the Fifth Assessment Report (IPCC,2013) ... 3-17
Figure 3-16 SLR projections for this century, showing upper limit values for 2040 and 2070 (IPCC, 2013) ... 3-18
Figure 3-17 MFR best track data for the years 1980 to 2015. Also indicated are the three locations used in the calculation of extreme wind speed .. 3-19
Figure 3-18 Time-series of modelled peak wind speeds for all historical tropical cyclones from 1979 to 2015 at the three locations in Mauritius ... 3-19
Figure 3-19 Trends in average wind speed based upon climate change (Tokinaga, 2011)3-21
Figure 3-20 Trend in wind speeds per decade for 1998-2010 for different climate models (IPCC, 2013) ... 3-21
Figure 4-1: Profile along centre of Coast Road B9 .. 4-3
Figure 6-1: Revetment option: Expected wave reflection towards the barrier reef 6-10