TABLE OF CONTENTS

1 EXECUTIVE SUMMARY ... 1-1
 PROPOSENT .. 1-1
1.1 .. 1-1
1.2 PROJECT PURPOSE AND NEED ... 1-1
1.3 BRIEF ACTION DESCRIPTION ... 1-1
1.4 PROJECT COMPONENTS .. 1-2
 1.4.1 OFFSHORE PIPELINES ... 1-2
 1.4.2 COOLING WATER PUMP STATION SITE ... 1-3
 1.4.3 THERMAL ENERGY STORAGE FACILITY ... 1-4
 1.4.4 PIPELINE STAGING SITE ... 1-4
 1.4.5 DISTRIBUTION PIPELINE RETICULATION NETWORK ... 1-4
 1.4.6 MAJOR CONCLUSIONS ... 1-5
 1.4.7 SIGNIFICANT BENEFICIAL AND ADVERSE IMPACTS .. 1-5
 1.4.8 FUTURE ADDITIONAL DOWNSTREAM ACTIVITIES .. 1-5
 1.4.9 POTENTIAL IMPACTS .. 1-6
 1.4.10 PROPOSED MITIGATION MEASURES ... 1-8
 1.4.11 COMPATIBILITY WITH LAND USE PLANS AND POLICIES 1-10
 1.4.12 SOCIAL IMPACTS AND CONCERNS ... 1-10
1.5 CONCLUSIONS .. 1-11
2 INTRODUCTION ... 2-1
2.1 Project Background ... 2-1
2.2 Terms and Reference for the ESIA .. 2-1
2.3 Overview of the Study process .. 2-2
 2.3.1 ENVIRONMENTAL SCOPING STUDY .. 2-2
 2.3.2 SPECIALIST STUDIES ... 2-2
 2.3.3 COMPILED OF ESIA REPORT ... 2-2
2.4 Report Structure .. 2-2
 2.4.1 VOLUME 1: MAIN REPORT ... 2-2
 2.4.2 VOLUME 2: SPECIALIST REPORTS .. 2-3
3 PROJECT PURPOSE ... 3-1
3.1 Project Purpose .. 3-1
3.2 SWAC Benefits .. 3-1
 3.2.1 ENVIRONMENTAL BENEFITS .. 3-1
 3.2.2 REDUCED GREENHOUSE GASES AND OTHER AIR AND WATER POLLUTANTS 3-1
 3.2.3 CARBON CREDITS .. 3-1
 3.2.4 REDUCED USE OF HARMFUL CHEMICALS .. 3-1
 3.2.5 REDUCED THERMAL POLLUTION .. 3-2
 3.2.6 ENERGY AND DEMAND REDUCTION BENEFITS .. 3-2
 3.2.7 INCREASED ENERGY EFFICIENCY ... 3-2
 3.2.8 REDUCED USE OF FOSSIL FUELS .. 3-2
 3.2.9 INCREASED ENERGY SECURITY .. 3-2
 3.2.10 LOCAL ECONOMIC DEVELOPMENT BENEFITS .. 3-2
 3.2.11 RELIABLE COOLING ... 3-2
 3.2.12 SOCIAL BENEFITS .. 3-3
 3.2.13 ECONOMIC BENEFITS ... 3-3
 3.2.14 SIMPLE OPERATING SYSTEM .. 3-3
 3.2.15 REDUCED OPERATIONAL AND MAINTENANCE COSTS 3-3
4 STUDY APPROACH AND METHODOLOGY ... 4-1
4.1 National Legislative and regulatory framework ... 4-1
 4.1.1 ENVIRONMENT PROTECTION ACT, 2002 (AS AMENDED) 4-1
4.1.2 LEGISLATIVE, REGULATORY AND POLICY FRAMEWORK RELEVANT TO THE DESIGN, CONSTRUCTION AND OPERATIONAL PHASES OF THE PROPOSED PROJECT ... 4-2
4.2 ESIA Methodology ... 4-3
4.2.1 SCOPING STUDY PHASE .. 4-3
4.2.2 IMPACT ASSESSMENT PHASES .. 4-4
4.3 Assumptions and Limitations ... 4-5
 5 GENERAL PROJECT INFORMATION ... 5-1
 5.1 Details of the Proponent ... 5-1
 5.2 Deep Ocean Water Application Project .. 5-1
 5.3 Concession and Lease Agreement for the Project .. 5-2
 5.3.1 CONCESSION AT SEA ... 5-2
 5.3.2 LEASE OF STATE LAND .. 5-2
 5.4 Project Description ... 5-3
 5.6 Current and other reasonably foreseeable projects in the Project Area 5-5
 5.7 PUMPSTATION Masterplan LAYOUT ... 5-5
 5.8 project LOCATION PLAN .. 5-6
 6 DETAILED PROJECT INFORMATION .. 6-1
 6.1 Project Components .. 6-1
 6.1.1 OFFSHORE COMPONENT (INTAKE AND DISCHARGE PIPES) 6-1
 6.1.2 ONSHORE COMPONENT (ENERGY TRANSFER PUMP STATION AND THERMAL ENERGY STORAGE TANK) 6-4
 6.1.3 ONSHORE COMPONENT (PIPELINE RETICULATION NETWORK FROM PUMPSTATION TO PORT LOUIS CBD) 6-10
 6.2 Zoning and Land Ownership ... 6-14
 6.3 Proposed Construction Methodologies ... 6-14
 6.3.1 OFFSHORE COMPONENT (INTAKE AND DISCHARGE PIPES) 6-14
 6.3.2 ONSHORE COMPONENT (PUMP STATION AND THERMAL ENERGY STORAGE TANK) 6-28
 6.3.3 ONSHORE COMPONENT (PIPELINE RETICULATION NETWORK – PUMPSTATION TO PORT LOUIS CBD) 6-32
 6.4 Bulk Service Requirements ... 6-35
 6.4.1 DURING THE CONSTRUCTION PHASE ... 6-35
 6.4.2 DURING THE OPERATIONAL PHASE .. 6-35
 6.4.3 BULK POWER SUPPLY ... 6-36
 6.4.4 WASTEWATER DISPOSAL ... 6-36
 6.4.5 TELECOMMUNICATIONS ... 6-37
 6.4.6 SOLID WASTE DISPOSAL .. 6-37
 6.4.7 STORMWATER DISCHARGE ... 6-37
 6.5 Work Yard Sites - Establishment and Other Facilities ... 6-38
 6.5.1 CONTRACTOR’S SITE ESTABLISHMENT (PIPE STORAGE YARD AND OFFSHORE STAGING AREA) 6-38
 6.5.2 OFFSHORE STAGING AREA FOR PIPELINE ASSEMBLY 6-39
 6.5.3 PUMPSTATION AND THERMAL ENERGY STORAGE TANK WORKING SITE 6-39
 6.6 Material Resource Requirements ... 6-41
 6.6.1 PUMPSTATION AND THERMAL ENERGY STORAGE TANK 6-41
 6.6.2 OFFSHORE INTAKE AND RETURN PIPELINES ... 6-41
 6.6.3 ONSHORE PIPELINE RETICULATION NETWORK ... 6-42
 6.7 Envisaged project implementation schedule ... 6-43
 6.8 Operation and maintenance ... 6-44
 6.8.1 OFFSHORE “OPEN LOOP” SHALLOW AND DEEP WATER PIPELINES 6-44
 6.8.2 ONSHORE PUMP STATION AND THERMAL ENERGY STORAGE TANK 6-44
 6.8.3 ON-SHORE PIPELINE RETICULATION NETWORK 6-47
 6.8.4 SECONDARY SUBSTATIONS ... 6-48
 7 CONSIDERATION OF ALTERNATIVES ... 7-1
 7.1 The ‘Do Nothing’ Alternative .. 7-1
 7.1.1 COMPARISON OF ENVIRONMENTAL IMPACTS BETWEEN THE SWAC AND “DO NOTHING” ALTERNATIVES 7-1
 7.2 Alternative PUMP STATION LAYOUTS AND OFFSHORE PIPELINE ALIGNMENTS ... 7-4
APPENDIX A
LIST OF TABLES
Table 5-1: List of Potential Downstream Activities .. 5-5
Table 6-1: Deep Seawater Mineral Content – Mauritius ... 6-27
Table 7-1: Comparison of SWAC and the “Do-Nothing” Alternative 7-3
Table 8-1: Results of Water Quality Analysis in Existing Drains 8-8
Table 8-2: Results of Air Quality Monitoring .. 8-15
Table 9-1 Onshore & Offshore Impacts and Mitigation Measures 9-2
Table 9-2: Predicted Social Impacts .. 9-25
Table 10-1: Onshore Environmental Monitoring Plan .. 10-3
Table 10-2: Offshore Environmental Monitoring Plan Shallow Section 10-4
Table 10-3: Offshore Environmental Monitoring Plan Deepwater Section 10-6

LIST OF FIGURES
Figure 5-1: Schematic Illustration of Closed and Open Loop SWAC Distribution Network ... 5-3
Figure 5-2: Schematic Drawing of SWAC System with Chiller Enhancement 5-4
Figure 6-1: Initial Proposed Alignment of Offshore Intake and Return Pipelines 6-1
Figure 6-2: Final Offshore Intake and Return Pipeline Alignments for Legs A – B – C 6-3
Figure 6-3: Alternate Pumpstation Design Configurations .. 6-4
Figure 6-4: Preferred Option Dry Sump Pump Station with an 800mm Intake Pipeline 6-5
Figure 6-5: Pump Station Layout Plan showing Major Components 6-6
Figure 6-6: Pumpstation and Thermal Energy Storage Tank Site Layout 6-7
Figure 6-7: Plan View of Proposed Onshore Pipe Alignment through the CEB Wayleave Corridor ... 6-8
Figure 6-8: Onshore Proposed Pipeline Profile along Designated CEB Corridor – OPTION 1 ... 6-9
Figure 6-9: Onshore Proposed Pipeline Profile along the Designated CEB Corridor – OPTION 2 ... 6-9
Figure 6-10: Pipeline Reticulation Network through Port Louis Central Business District 6-13
Figure 6-11: Port Louis Outline Planning Scheme .. 6-14
Figure 6-12: HDPE Pipe Fusion Operation .. 6-15
Figure 6-13: Roller Bed Arrangement to Launch HDPE Pipes into the Sea 6-16
Figure 6-14: Concept Design of Offshore Typical Pipeline Profile along Shallow Water Section .. 6-17
Figure 6-15: Typical Construction Methods used in Shallow Water 6-19
Figure 6-16: Roadway across Shallow Water in American Samoa 6-20
Figure 6-17: Excavator working on Temporary Roadway across Shallow Water Section .. 6-20
Figure 6-18: Typical Trench and Pipeline Bedding Details though Shallow Water Section (0m to -20m) ... 6-21
Figure 6-19: Alternative Shallow Water Section Excavation by Barge - Albion Mauritius 6-22
Figure 6-21: Deep Water Section Pipeline Laying Procedure 6-23
Figure 6-22: Typical Enhanced Anchoring with Pipes driven adjacent to each Pipe Weight .. 6-24
Figure 6-23: Typical Alternate Method used to Anchor Pipe Weights to the Seabed 6-24
Figure 6-24: Showing Dual Pipelines Fixed to a Single Concrete Anchor 6-25
Figure 6-25: Typical Detail of Deepwater Pipeline at Intake Position 6-25
Figure 6-26: Typical Precast Concrete Dry Sump with Pumps installed at the Design Elevation .. 6-29
Figure 6-27: Prestressed Concrete Thermal Energy Storage Tank Construction 6-31
Figure 6-28: Pipeline Trench Details - Port Louis Pipeline Reticulation Network 6-34
Figure 6-29: Onshore and Offshore Contractor’s Site Establishment Area and Temporary Offshore Pipeline Staging Area ... 6-39
Figure 6-30: Proposed Road Access and Parking Facilities at the Pumpstation Site . 6-40
Figure 6-31: Proposed Road Access Layout at Bain des Dames 6-40
Figure 6-32: Typical Thermal Energy Balance at Pumpstation 6-45
Figure 8-1: Indicative Wetland (Green) and Floodplain (Red line) Delimitation 8-3
Figure 8-2: Extract of Land Use Map showing Waterbody & Marsh (dotted blue) 8-4
Figure 8-3: Municipal Drainage Network and Location of Water Sampling Points 8-7
VOLUME 2

SPECIALIST STUDIES

LIST OF CONTENTS

1) ONSHORE STUDIES
 i. Biodiversity and Ecological Impact Assessment (Part I)
 ii. Hydrological and Drainage Study at the Pumpstation Site
 iii. Environmental Noise Assessment at the Pumpstation Site
 iv. Geotechnical Investigations at the Pumpstation Site

2) OFFSHORE STUDIES
 i. Biodiversity and Ecological Impact Assessment
 Deepwater Intake and Discharge Pipelines (Part II)
 ii. Deep Seawater Bathymetric and Metocean Measurements

3) SOCIAL IMPACT ASSESSMENT
 i. Report on Consultations and Meetings with Stakeholders and Fishermen at Bain Des Dames
 ii. Report on Consultations with Stakeholders in the Port Louis Central Business District
 iii. Report on the Public Participation Meeting held on 22 February 2017